EPC2212 - Automotive 100 V (D-S) Enhancement Mode Power Transistor

V_{DS} , 100 V R_{DS(on)} , 13.5 mΩ I_D , 18 A

AEC-Q101

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Maximum Ratings					
	PARAMETER VALUE				
V_{DS}	Drain-to-Source Voltage (Continuous)	100	V		
I _D	Continuous (T _A = 25°C)	18			
	Pulsed (25°C, $T_{PULSE} = 300 \mu s$)	75	Α		
.,	Gate-to-Source Voltage	6	V		
V_{GS}	Gate-to-Source Voltage	-4	V		
TJ	Operating Temperature	-40 to 150	°C		
T _{STG}	Storage Temperature	-40 to 150			

Thermal Characteristics					
PARAMETER TYP					
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	2			
$R_{\theta JB}$	R _{OJB} Thermal Resistance, Junction-to-Board		°C/W		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	69			

EPC2212 eGaN® FETs are supplied only in passivated die form with solder bars. Die size: 2.1 x 1.6 mm

Applications

- · Lidar/Pulsed Power Applications
- High Power Density DC-DC Converters
- · Class-D Audio
- · High Intensity Headlamps

Benefits

- Ultra High Efficiency
- Ultra Low R_{DS(on)}
- Ultra Low Q_G
- Ultra Small Footprint

Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
BV_DSS	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A}$	100			V
I _{DSS}	Drain-Source Leakage	$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$		10	250	μΑ
	Gate-to-Source Forward Leakage	$V_{GS} = 6 \text{ V}, T_J = 25^{\circ}\text{C}$		0.005	1.8	mA
I_{GSS}	Gate-to-Source Forward Leakage#	$V_{GS} = 6 \text{ V}, T_J = 125^{\circ}\text{C}$		0.015	3	mA
	Gate-to-Source Reverse Leakage	$V_{GS} = -4 V$		10	250	μΑ
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 3 \text{ mA}$	0.7	1	2.5	V
$R_{DS(on)}$	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 11 \text{ A}$		10	13.5	mΩ
V_{SD}	Source-Drain Forward Voltage	$I_S = 0.5 \text{ A, } V_{GS} = 0 \text{ V}$		1.5		V

All measurements were done with substrate connected to source.

[#] Defined by design. Not subject to production test.

Dynamic Characteristics (T _J = 25°C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{ISS}	Input Capacitance#			339	407	
C_{RSS}	Reverse Transfer Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		3		
Coss	Output Capacitance#			238	357	рF
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	V 040 50 V V 0 V		292		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)	$V_{DS} = 0$ to 50 V, $V_{GS} = 0$ V		359		
R_{G}	Gate Resistance			0.4		Ω
Q _G	Total Gate Charge#	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 11 \text{ A}$		3.2	4	
Q_GS	Gate-to-Source Charge			0.9		
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 50 \text{ V}, I_D = 11 \text{ A}$		0.6		
Q _{G(TH)}	Gate Charge at Threshold			0.55		nC
Qoss	Output Charge#	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		18	27	
Q_{RR}	Source-Drain Recovery Charge			0		

All measurements were done with substrate connected to source.

Figure 1: Typical Output Characteristics at 25°C

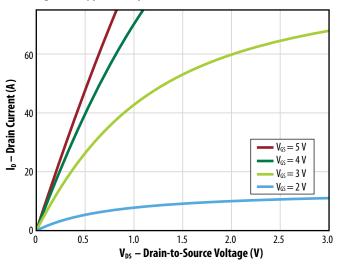


Figure 2: Transfer Characteristics

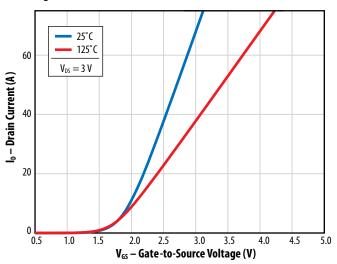
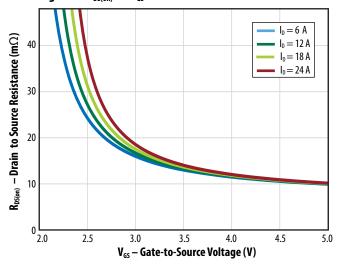
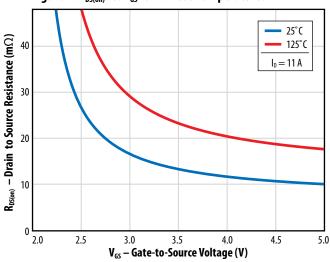
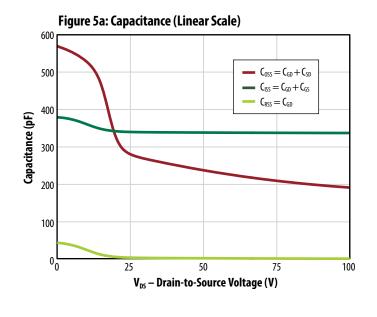
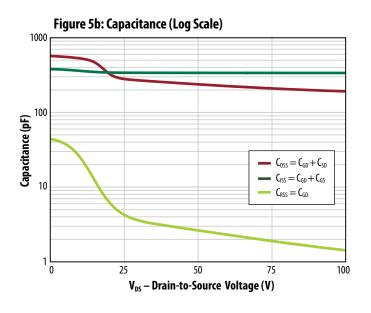
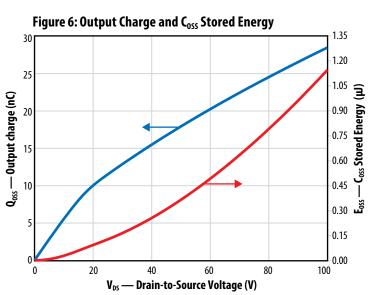


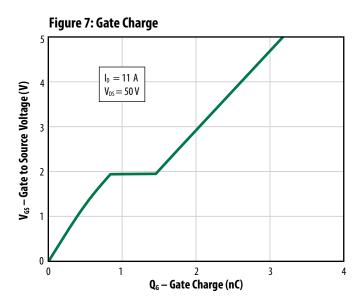
Figure 3: $R_{DS(on)}$ vs. V_{GS} for Various Drain Currents

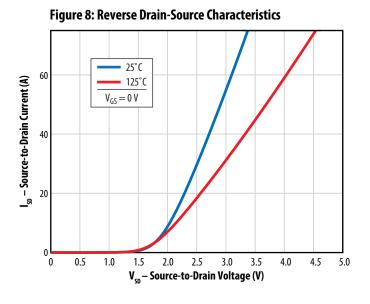




Figure 4: R_{DS(on)} vs. V_{GS} for Various Temperatures




[#] Defined by design. Not subject to production test.


Note 2: $C_{OSS(ER)}$ is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.


Note 3: $C_{OSS(TR)}$ is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS} .

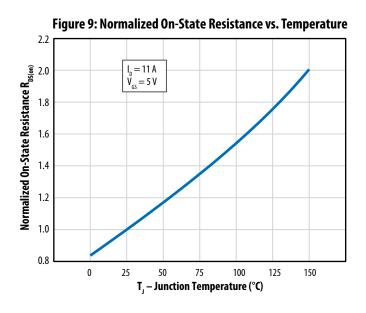
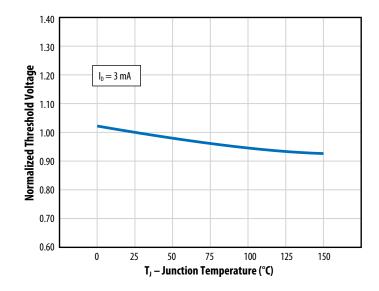



Figure 10: Normalized Threshold Voltage vs. Temperature

Figure 11: Transient Thermal Response Curves

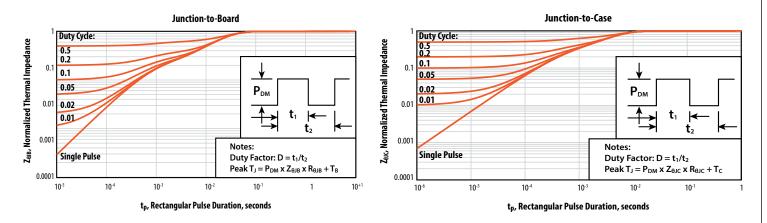
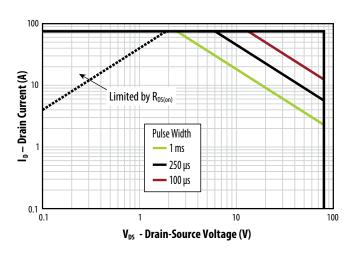
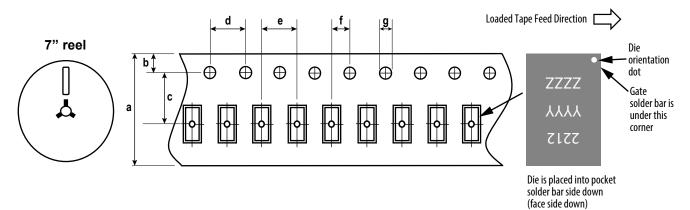




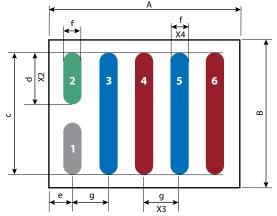
Figure 12: Safe Operating Area

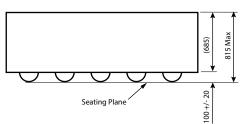
TAPE AND REEL CONFIGURATION

4mm pitch, 8mm wide tape on 7" reel

	EPC2212 (note 1)			
Dimension (mm)	target	min	max	
а	8.00	7.90	8.30	
b	1.75	1.65	1.85	
c (see note)	3.50	3.45	3.55	
d	4.00	3.90	4.10	
е	4.00	3.90	4.10	
f (see note)	2.00	1.95	2.05	
g	1.5	1.5	1.6	

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/JEDEC industry standard.


Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.


Part		Laser Markings	
Number	Part # Marking Line 1	Lot_Date Code Marking line 2	Lot_Date Code Marking Line 3
EPC2212	2212	YYYY	ZZZZ

DIE OUTLINE

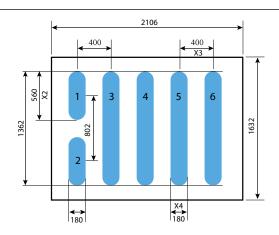
Solder Bar View

Side View

DIM		MICROMETERS	RS		
DIM	MIN	Nominal	MAX		
A	2076	2106	2136		
В	1602	1632	1662		
c	1379	1382	1385		
d	577	580	583		
e	235	250	265		
f	195	200	205		
g	400	400	400		

Pad no. 1 is Gate;

Pads no. 3, 5 are Drain;


Pads no. 4, 6 are Source;

Pad no. 2 is Substrate.*

*Substrate pin should be connected to Source

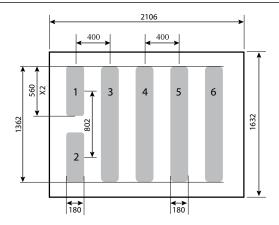
RECOMMENDED LAND PATTERN

(units in μ m)

The land pattern is solder mask defined.

Pad no. 1 is Gate;

Pads no. 3, 5 are Drain;


Pads no. 4, 6 are Source;

Pad no. 2 is Substrate. *

*Substrate pin should be connected to Source

RECOMMENDED STENCIL DRAWING

(measurements in μ m)

Recommended stencil should be 4mil (100 μ m) thick, must be laser cut , opening per drawing. The corner has a radius of R60

Intended for use with SAC305 Type 3 solder, reference 88.5% metals content.

Additional assembly resources available at