

SBOS121B - JUNE 2000 - REVISED JANUARY 2004

1μA, Rail-to-Rail I/O CMOS OPERATIONAL AMPLIFIERS

FEATURES

● LOW SUPPLY CURRENT: 1μA ● GAIN-BANDWIDTH: 70kHz

• UNITY-GAIN STABLE

LOW INPUT BIAS CURRENT: 10pA (max)
 WIDE SUPPLY RANGE: 1.8V to 5.5V
 INPUT RANGE: 200mV Beyond Rails
 OUTPUT SWINGS TO 350mV OF RAILS

● OUTPUT DRIVE CURRENT: 8mA

● OPEN-LOOP GAIN: 90dB

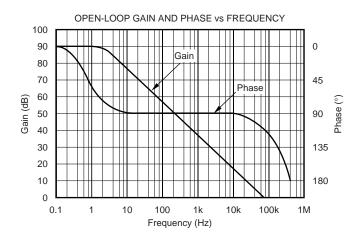
■ MicroPACKAGES: SC70, SOT23-5, SOT23-8

APPLICATIONS

- BATTERY PACKS AND POWER SUPPLIES
- PORTABLE PHONES, PAGERS, AND CAMERAS
- SOLAR-POWERED SYSTEMS
- SMOKE, GAS, AND FIRE DETECTION SYSTEMS
- REMOTE SENSORS
- PCMCIA CARDS
- DRIVING ANALOG-TO-DIGITAL (A/D) CONVERTERS
- MicroPOWER FILTERS

OPAx349 RELATED PRODUCTS

FEATURES	PRODUCT
1μΑ, 5.5kHz, Rail-To-Rail	TLV240x
1μA, 5.5kHz, Rail-To-Rail	TLV224x
7μA, 160kHz, Rail-To-Rail, 2.7V to 16V Supply	TLV238x
7μA, 160kHz, Rail-To-Rail, Micro Power	TLV27Lx
20μA, 500kHz, Rail-To-Rail, 1.8V Micro Power	TLV276x
20μA, 350kHz, Rail-To-Rail, Micro Power	OPAx347
45μA, 1MHz, Rail-To-Rail, 2.1V to 5.5V Supply	OPAx348


DESCRIPTION

The OPA349 and OPA2349 are ultra-low power operational amplifiers that provide 70kHz bandwidth with only $1\mu A$ quiescent current. These rail-to-rail input and output amplifiers are specifically designed for battery-powered applications. The input common-mode voltage range extends 200mV beyond the power-supply rails and the output swings to within 350mV of the rails, maintaining wide dynamic range. Unlike some micropower op amps, these parts are unity-gain stable and require no external compensation to achieve wide bandwidth. The OPA349 features a low input bias current that allows the use of large source and feedback resistors.

The OPA349 can be operated with power supplies from 1.8V to 5.5V with little change in performance, ensuring continuing superior performance even in low battery situations.

The OPA349 comes in miniature SOT23-5, SC70, and SO-8 surface-mount packages. The OPA2349 dual is available in SOT23-8, and SO-8 surface-mount packages. These tiny packages are ideal for use in high-density applications, such as PCMCIA cards, battery packs, and portable instruments.

The OPA349 is specified for 0° C to +70°C. The OPA2349 is specified for -40°C to +70°C.

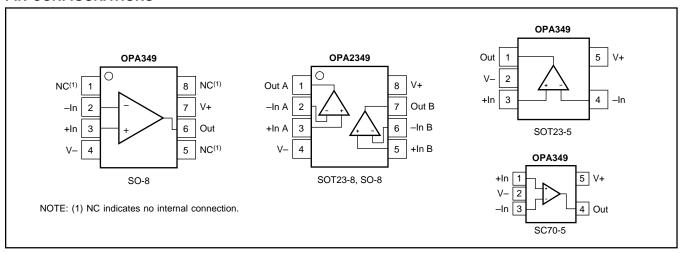
ABSOLUTE MAXIMUM RATINGS(1)

Supply Voltage, V+ to V	5.5V
Signal Input Terminals, Voltage(2)	(V–) – 0.5V to (V+) + 0.5V
Current ⁽²⁾	10mA
Output Short Circuit(3)	Continuous
Operating Temperature, OPA2349	55°C to +125°C
Operating Temperature, OPA349	0°C to +85°C
Storage Temperature	65°C to +150°C
Junction Temperature	150°C
Lead Temperature (soldering, 3s)	300°C

NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these, or any other conditions beyond those specified, is not implied. (2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less. (3) Short-circuit to ground, one amplifier per package.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.


ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION(1)

PRODUCT	PACKAGE	PACKAGE DESIGNATOR ⁽¹⁾	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
Single OPA349NA " OPA349UA " OPA349SA	SOT23-5 " SO-8 " SC70-5	DBV D " DCK	A49 " OPA349UA " S49	OPA349NA/250 OPA349NA/3K OPA349UA OPA349UA/2K5 OPA349SA/250 OPA349SA/3K	Tape and Reel, 250 Tape and Reel, 3000 Rails, 100 Tape and Reel, 2500 Tape and Reel, 250 Tape and Reel, 3000
Dual OPA2349EA " OPA2349UA "	SOT23-8 " SO-8	DCN " D	C49 " OPA2349UA "	OPA2349EA/250 OPA2349EA/3K OPA2349UA OPA2349UA/2K5	Tape and Reel, 250 Tape and Reel, 3000 Rails, 100 Tape and Reel, 2500

NOTE: (1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet.

PIN CONFIGURATIONS

ELECTRICAL CHARACTERISTICS (Single): $V_S = +1.8V$ to +5.5V

Boldface limits apply over the specified temperature range, $T_A = 0^{\circ}C$ to $+70^{\circ}C$.

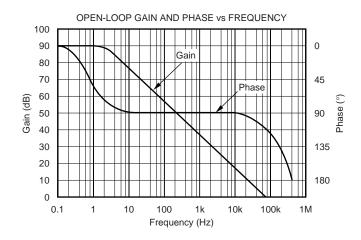
At T_A = +25°C, and R_L = 1M Ω connected to $V_S/2$, unless otherwise noted.

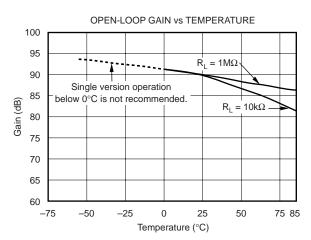
			OPA349		
PARAMETER	CONDITION	MIN	TYP ⁽¹⁾	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage Voltage Over Temperature Drift dVos/d' vs Power-Supply Rejection Ratio Over Temperature			±2 ±2 ±15 350	±10 ±13 1000 3000	mV μ V/°C μV/V μ V/V
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio Over Temperature Over Temperature		(V-) - 0.2 48 46 52 50	60 72	(V+) + 0.2	V dB dB dB dB
INPUT BIAS CURRENT Input Bias Current I, Input Offset Current I _O			±0.5 ±1	±10 ±10	pA pA
INPUT IMPEDANCE Differential Common-Mode			10 ¹³ 2 10 ¹³ 4		Ω pF Ω pF
NOISE Input Voltage Noise, $f = 0.1Hz$ to 10Hz Input Voltage Noise Density, $f = 1kHz$ e Current Noise Density, $f = 1kHz$ i			8 300 4		μVp-p nV/√Hz fA/√Hz
OPEN-LOOP GAIN Open-Loop Voltage Gain Over Temperature Open-Loop Voltage Gain Over Temperature		74 72 74 60	90		dB dB dB dB
OUTPUT Voltage Output Swing from Rail Over Temperature Output Current Short-Circuit Current Capacitive Load Drive CUTPUT Voltage Output Rail Signature Israel Capacitive Load Drive Capacitive Load Drive Capacitive Load Drive		See 1	±8 ±10 Typical Characte	300 300 350 350 350	mV mV mV mV mA
FREQUENCY RESPONSE Gain-Bandwidth Product GBW Slew Rate SF Settling Time, 0.1% t, 0.01% Overload Recovery Time	$V_S = +5V, G = +1$		70 0.02 65 80 5		kHz V/μs μs μs μs
POWER SUPPLY Specified Voltage Range Quiescent Current (per amplifier) Over Temperature		+1.8	1	+5.5 2 10	V μΑ μ Α
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance $\theta_{\rm J}$ SOT23-5 Surface-Mount SO-8 Surface-Mount SC70-5 Surface-Mount		0 0 -65	200 150 250	+70 +85 +150	°C °

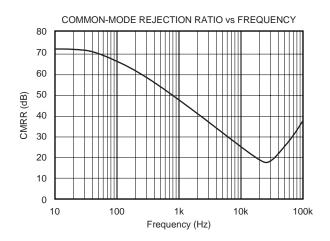
NOTE: (1) Refer to Typical Characteristic curves.

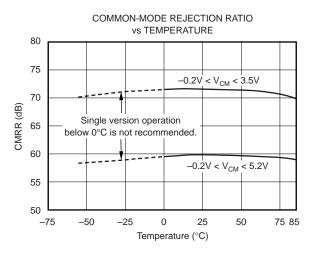
ELECTRICAL CHARACTERISTICS (Dual): $V_S = +1.8V$ to +5.5V

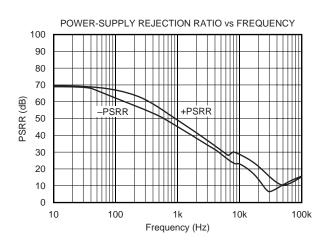
Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+70^{\circ}C$.

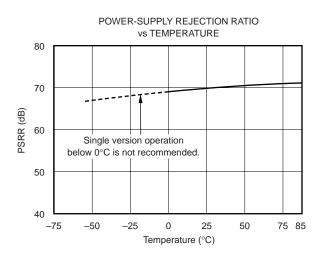

At T_A = +25°C, and R_L = 1M Ω connected to $V_S/2$, unless otherwise noted.

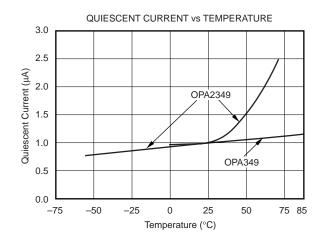

PARAMETER		CONDITION	MIN	TYP ⁽¹⁾	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage Over Temperature Drift dv vs Power Supply Over Temperature Channel Separation, dc	V _{OS} / _{os} /dT PSRR	$V_{S} = 5V, \ V_{CM} = 2.5V$ $V_{S} = 1.8V \text{ to } 5.5V, \ V_{CM} = (V-) + 0.3V$ $R_{L} = 100k\Omega$ $f = 1kHz$		±2 ±2 ±15 350	±10 ±13 1000 3000	mV mV μV/°C μV/V μV/V dB
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio Over Temperature Over Temperature	V _{CM} CMRR	$V_S = +5V$, $-0.2V < V_{CM} < 5.2V$ $V_S = +5V$, $-0.2V < V_{CM} < 3.5V$	(V–) – 0.2 48 46 52 50	60 72	(V+) + 0.2	V dB dB dB dB
INPUT BIAS CURRENT Input Bias Current Input Offset Current	I _B I _{OS}			±0.5 ±1	±10 ±10	pA pA
INPUT IMPEDANCE Differential Common-Mode				10 ¹³ 2 10 ¹³ 4		Ω pF Ω pF
NOISE Input Voltage Noise, f = 0.1Hz to 10Hz Input Voltage Noise Density, f = 1kHz Current Noise Density, f = 1kHz	e _n			8 300 4		μVp-p nV/√ <u>Hz</u> fA/√Hz
OPEN-LOOP GAIN Open-Loop Voltage Gain Over Temperature Open-Loop Voltage Gain Over Temperature	A _{OL}	$R_{L} = 1M\Omega, \ V_{S} = +5.5V, \ +0.3V < V_{O} < +5.2V$ $R_{L} = 10k\Omega, \ V_{S} = +5.5V, \ +0.35V < V_{O} < +5.15V$	74 72 74 60	90 90		dB dB dB dB
OUTPUT Voltage Output Swing from Rail Over Temperature Over Temperature Output Current Short-Circuit Current	I _{sc}	$R_L = 1M\Omega, V_S = +5.5V, A_{OL} > 74dB$ $R_L = 10k\Omega, V_S = +5.5V, A_{OL} > 74dB$		150 200 ±8 ±10	300 300 350 350	mV mV mV mM mA
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time, 0.1% 0.01% Overload Recovery Time	GBW SR t _S	$C_{L} = 10pF$ $G = +1$ $V_{S} = +5V, G = +1$ $V_{S} = 5V, 1V \text{ Step}$ $V_{S} = 5V, 1V \text{ Step}$ $V_{IN} \bullet \text{ Gain} = V_{S}$		70 0.02 65 80 5		kHz V/μs μs μs μs
POWER SUPPLY Specified Voltage Range Quiescent Current (per amplifier) Over Temperature	V _S	I _O = 0	+1.8	1	+5.5 2 10	V μΑ μ Α
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SOT23-8 Surface-Mount SO-8 Surface-Mount	$ heta_{\sf JA}$		-40 -40 -65	200 150	+70 +85 +150	°C °C °C °C/W °C/W

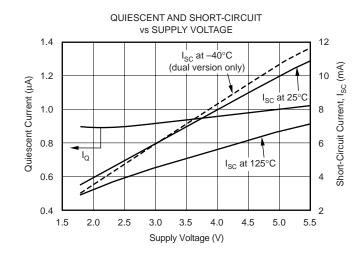

NOTE: (1) Refer to Typical Characteristic curves.

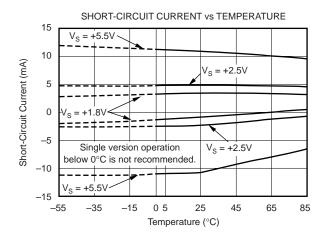

TYPICAL CHARACTERISTICS

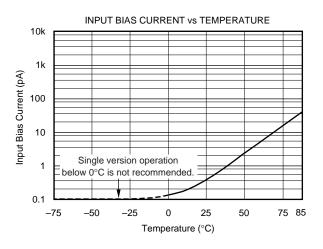

At T_A = +25°C, V_S = +5V, and R_L = 1M Ω connected to $V_S/2$, unless otherwise noted.

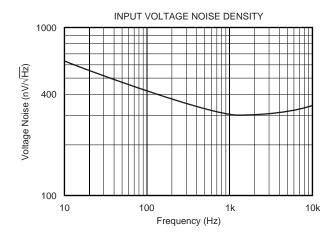


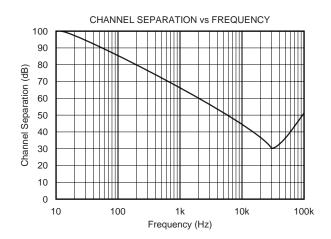


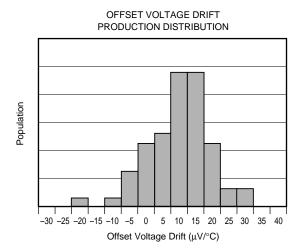


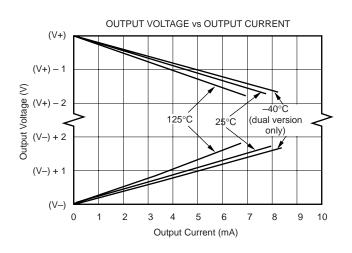


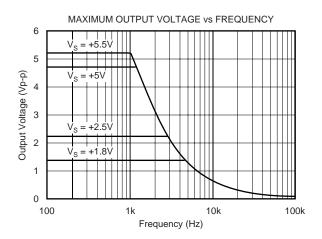

TYPICAL CHARACTERISTICS (Cont.)

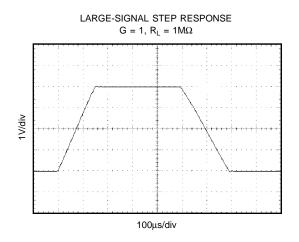

At T_A = +25°C, V_S = +5V, and R_L = 1M Ω connected to V_S/2, unless otherwise noted.

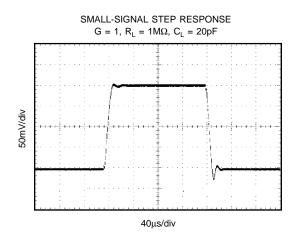


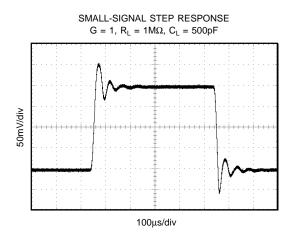


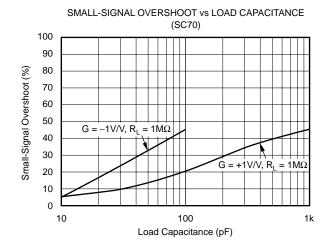


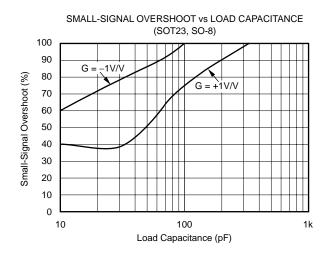



TYPICAL CHARACTERISTICS (Cont.)


At T_A = +25°C, V_S = +5V, and R_L = 1M Ω connected to $V_S/2$, unless otherwise noted.







TYPICAL CHARACTERISTICS (Cont.)

At T_A = +25°C, V_S = +5V, and R_L = 1M Ω connected to V_S/2, unless otherwise noted.

APPLICATIONS INFORMATION

The OPA349 series op amps are unity-gain stable and can operate on a single supply, making them highly versatile and easy to use. Power-supply pins should be bypassed with $0.01\mu F$ ceramic capacitors.

The OPA349 series op amps are fully specified and tested from +1.8V to +5.5V. Parameters that vary significantly with operating voltages or temperature are shown in the Typical Characteristic curves.

The ultra-low quiescent current of the OPA349 requires careful application circuit techniques to achieve low overall current consumption. Figure 1 shows an ac-coupled amplifier

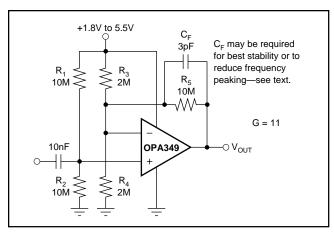


FIGURE 1. AC-Coupled Amplifier.

biased with a voltage divider. Resistor values must be very large to minimize current. The large feedback resistor value reacts with input capacitance and stray capacitance to produce a pole in the feedback network. A feedback capacitor may be required to assure stability and limit overshoot or gain peaking. Check circuit performance carefully to assure that biasing and feedback techniques meet signal and quiescent current requirements.

RAIL-TO-RAIL INPUT

The input common-mode voltage range of the OPA349 series extends 200mV beyond the supply rails. This is achieved with a complementary input stage—an N-channel input differential pair in parallel with a P-channel differential pair (as shown in Figure 2). The N-channel pair is active for input voltages close to the positive rail, typically (V+) - 1.3V to 200mV above the positive supply, while the P-channel pair is on for inputs from 200mV below the negative supply to approximately (V+) - 1.3V. There is a small transition region, typically (V+)-1.5V to (V+)-1.1V, in which both pairs are on. This 400mV transition region can vary 300mV with process variation. Thus, the transition region (both stages on) can range from (V+) - 1.8V to (V+) - 1.4V on the low end, up to (V+) - 1.2V to (V+) - 0.8V on the high end. Within the 400mV transition region PSRR, CMRR, offset voltage, offset drift, and THD may be degraded compared to operation outside this region. For more information on designing with rail-to-rail input op amps, see Figure 3, Design Optimization with Rail-to-Rail Input Op Amps.

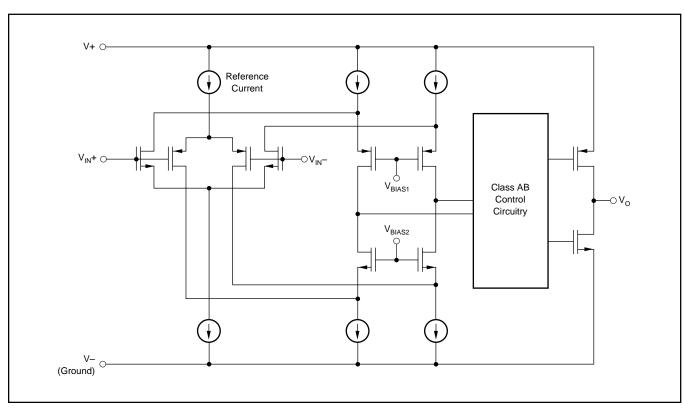


FIGURE 2. Simplified Schematic.

DESIGN OPTIMIZATION WITH RAIL-TO-RAIL INPUT OP AMPS

In most applications, operation is within the range of only one differential pair. However, some applications can subject the amplifier to a common-mode signal in the transition region. Under this condition, the inherent mismatch between the two differential pairs may lead to degradation of the CMRR and THD. The unity-gain buffer configuration is the most problematic—it will traverse through the transition region if a sufficiently

wide input swing is required. A design option would be to configure the op amp as a unity-gain inverter as shown below and hold the noninverting input at a set common-mode voltage outside the transition region. This can be accomplished with a voltage divider from the supply. The voltage divider should be designed such that the biasing point for the noninverting input is outside the transition region.

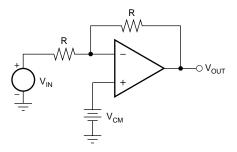


FIGURE 3. Design Optimization.

COMMON-MODE REJECTION

The CMRR for the OPA349 is specified in two ways so the best match for a given application may be used. First, the CMRR of the device in the common-mode range below the transition region ($V_{CM} < (V+) - 1.5V$) is given. This specification is the best indicator of the capability of the device when the application requires use of one of the differential input pairs. Second, the CMRR at $V_S = 5V$ over the entire common-mode range is specified.

OUTPUT DRIVEN TO V- RAIL

Loads that connect to single-supply ground (or the V- supply pin) can cause the OPA349 or OPA2349 to oscillate if the output voltage is driven into the negative rail (as shown in

Figure 4a). Similarly, loads that can cause current to flow out of the output pin when the output voltage is near V- can cause oscillations. The op amp will recover to normal operation a few microseconds after the output is driven positively out of the rail.

Some op amp applications can produce this condition even without a load connected to V-. The integrator in Figure 4b shows an example of this effect. Assume that the output ramps negatively, and saturates near 0V. Any negative-going step at V_{IN} will produce a positive output current pulse through R_1 and C_1 . This may incite the oscillation. Diode D_1 prevents the input step from pulling output current when the output is saturated at the rail, thus preventing the oscillation.

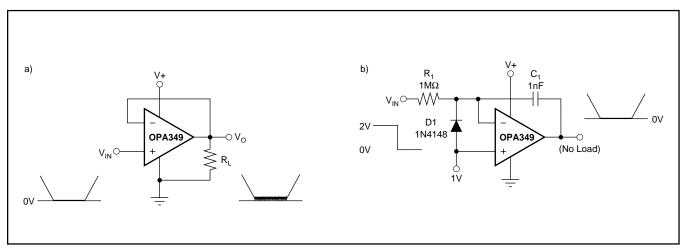


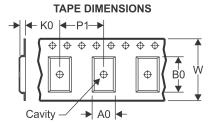
FIGURE 4. Output Driven to Negative Rail.

PACKAGE OPTION ADDENDUM

15-Apr-2017

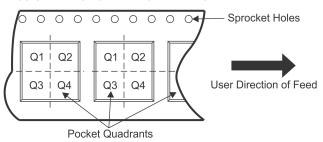
PACKAGING INFORMATION

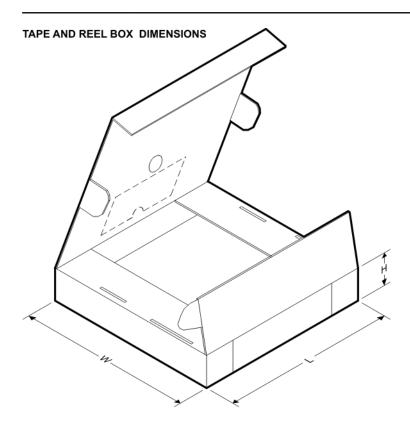
Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
HPA00215EA/3K	ACTIVE	SOT-23	DCN	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	C49	Samples
OPA2349EA/250	ACTIVE	SOT-23	DCN	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	C49	Samples
OPA2349EA/3K	ACTIVE	SOT-23	DCN	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	C49	Samples
OPA2349UA	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	OPA 2349UA	Samples
OPA2349UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	OPA 2349UA	Samples
OPA2349UA/2K5G4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	OPA 2349UA	Samples
OPA2349UAG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-55 to 125	OPA 2349UA	Samples
OPA349NA/250	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	A49	Samples
OPA349NA/250G4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	A49	Samples
OPA349NA/3K	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR		A49	Samples
OPA349NA/3KG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR		A49	Samples
OPA349SA/250	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		S49	Samples
OPA349SA/250G4	ACTIVE	SC70	DCK	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	S49	Samples
OPA349SA/3K	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		S49	Samples
OPA349SA/3KG4	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		S49	Samples
OPA349UA	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR		OPA 349UA	Samples
OPA349UA/2K5	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 349UA	Samples


PACKAGE OPTION ADDENDUM

15-Apr-2017

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
OPA349UA/2K5G4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	OPA 349UA	Samples
OPA349UAG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR		OPA 349UA	Samples

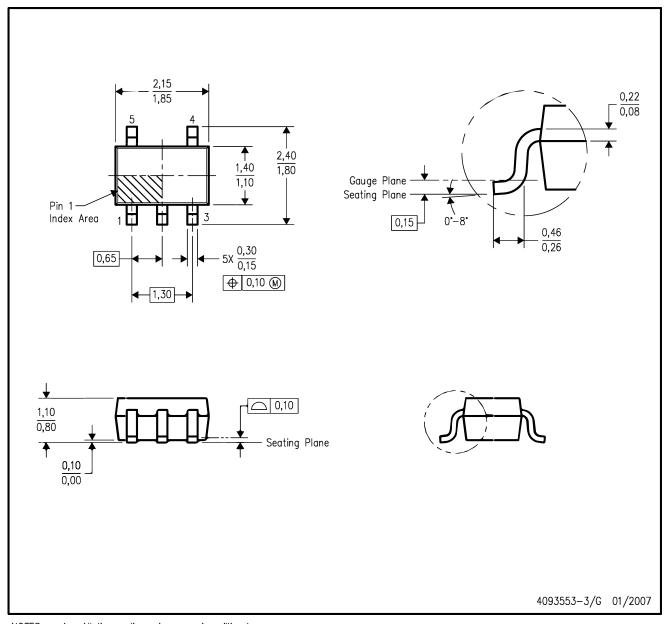

TAPE AND REEL INFORMATION


	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA2349EA/250	SOT-23	DCN	8	250	180.0	8.4	3.2	3.1	1.39	4.0	8.0	Q3
OPA2349EA/3K	SOT-23	DCN	8	3000	180.0	8.4	3.2	3.1	1.39	4.0	8.0	Q3
OPA2349UA/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
OPA349SA/250	SC70	DCK	5	250	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
OPA349SA/3K	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
OPA349UA/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

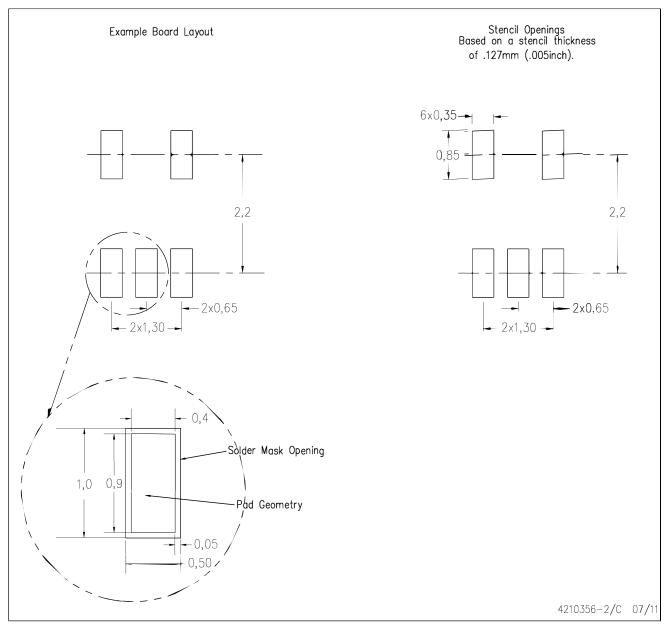


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA2349EA/250	SOT-23	DCN	8	250	210.0	185.0	35.0
OPA2349EA/3K	SOT-23	DCN	8	3000	210.0	185.0	35.0
OPA2349UA/2K5	SOIC	D	8	2500	367.0	367.0	35.0
OPA349SA/250	SC70	DCK	5	250	180.0	180.0	18.0
OPA349SA/3K	SC70	DCK	5	3000	180.0	180.0	18.0
OPA349UA/2K5	SOIC	D	8	2500	367.0	367.0	35.0

DCK (R-PDSO-G5)

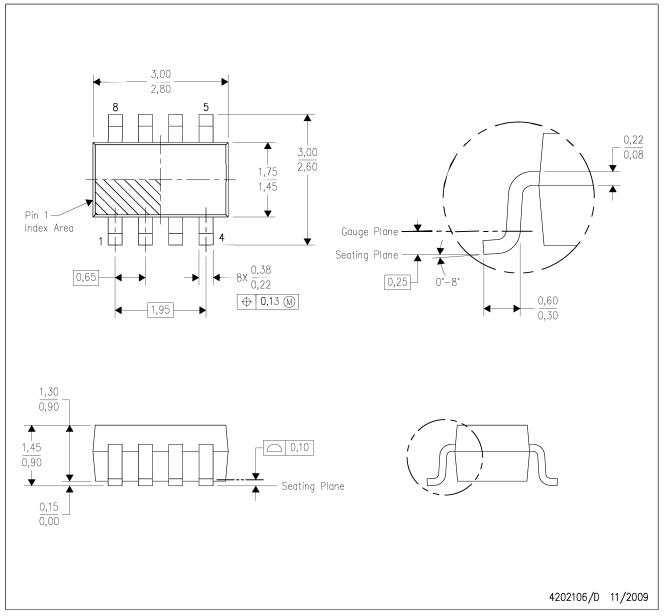
PLASTIC SMALL-OUTLINE PACKAGE



NOTES: A. All linear dimensions are in millimeters.

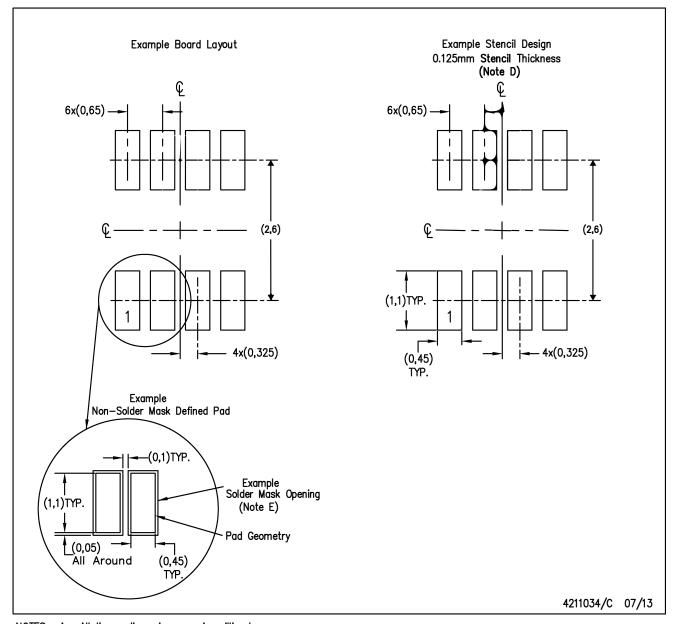
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)


PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

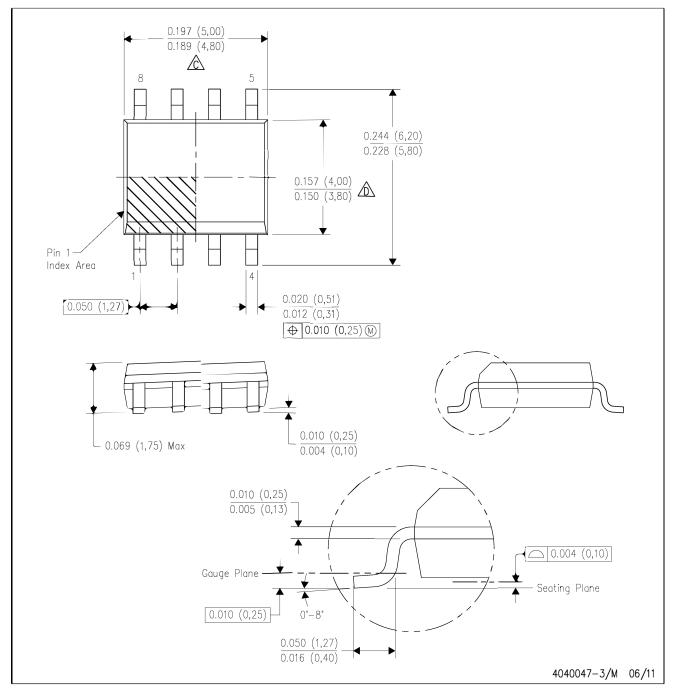
DCN (R-PDSO-G8)


PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Package outline exclusive of metal burr & dambar protrusion/intrusion.
- D. Package outline inclusive of solder plating.
- E. A visual index feature must be located within the Pin 1 index area.
- F. Falls within JEDEC MO-178 Variation BA.
- G. Body dimensions do not include flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

DCN (R-PDSO-G8)

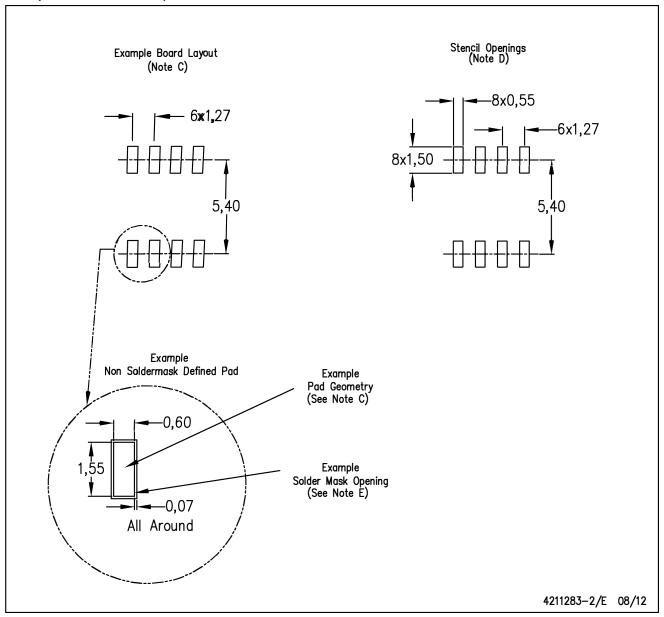
PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)



NOTES: A. All linear dimensions are in millimeters.

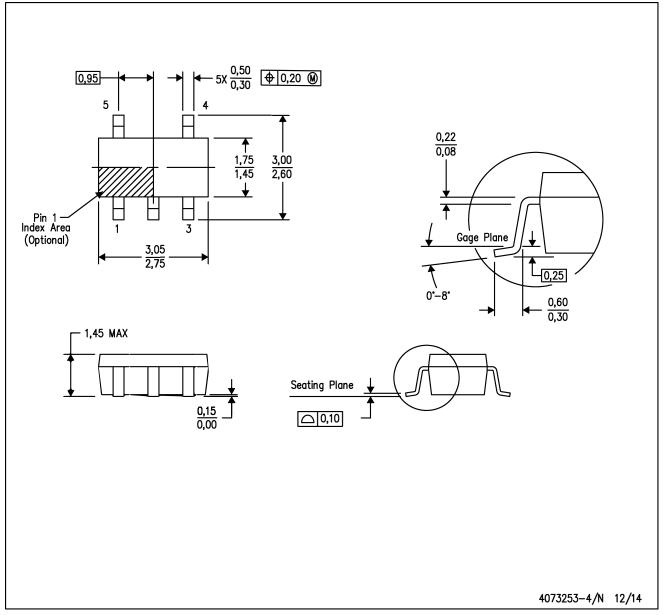
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

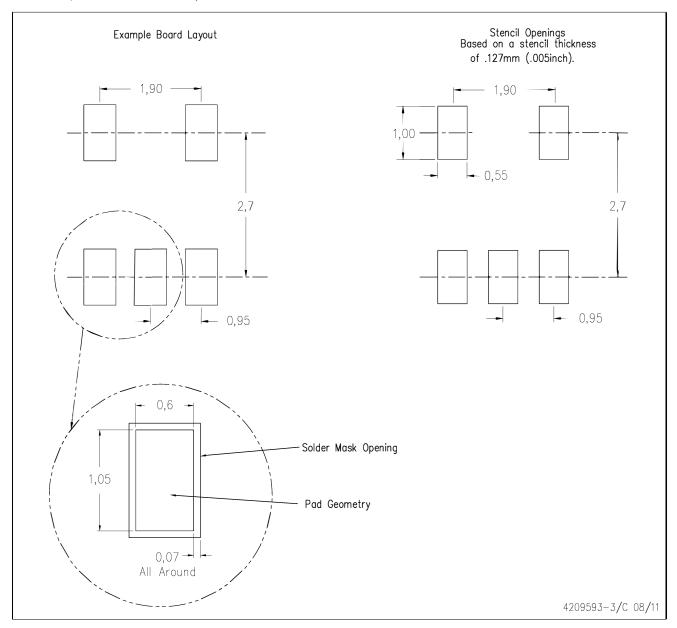
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DBV (R-PDSO-G5)


PLASTIC SMALL-OUTLINE PACKAGE

- NO TES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.