

H-bridge Motor Driver with Integrated Current Sense and Regulation

FEATURES

- N-Channel H-bridge Motor Driver: Drives One Bidirectional Brushed DC Motor, Two Unidirectional Brushed DC Motors, or Other Resistive and Inductive Loads
- . Wide 4.5V to 37V Operating Voltage
- . 3.5A Peak Current Drive
- . Integrated Current Sensing and Regulation
- . PH/EN and PWM Input Control Modes
- Cycle-by-cycle or Fixed Off-Time Current
 Regulation
- . Supports 1.8V, 3.3V, 5V Logic Inputs
- . Built-in 5V Reference Output
- . Ultra-Low Power Sleep Mode
- . VM Under voltage Lockout (UVLO)
- . Over current Protection (OCP)
- . Thermal Shutdown (TSD)
- . Automatic Fault Recovery and Indicator Pin
- . Small Packages
 - TMI8876: HTSSOP16
 - TMI8876Q: QFN3x3-16

APPLICATIONS

- . Brushed DC Motors
- . Major and Small Home Appliances
- Vacuum, Humanoid and Toy Robotics
- . Printers and Scanners
- Smart Meters
- ATMs, Currency Counters and EPOS
- . Servo Motors and Actuators

GENERAL DESCRIPTION

The TMI8876/Q is a motor driver for wide variety of end applications. The device integrates an H-bridge, charge pump regulator, current sensing and regulation, current proportional output, and protection circuitry. The charge pump improves efficiency by allowing for both high and low side N-channels MOSFETs and 100% duty cycle support.

Integrated current sensing allows for the driver to regulate the motor current during start up and high load events. A current limit can be set with an adjustable external voltage reference. Additionally, the device provides an output current proportional to the motor load current. This can be used to detect motor stall or change in load conditions.

A low-power sleep mode is provided to achieve ultra- low quiescent current draw by shutting down most of the internal circuitry. The device is fully protected from faults and short circuits, including undervoltage lockout (UVLO), output over-current protection (OCP), and device thermal shutdown (TSD). Fault conditions are indicated on nFAULT.

TYPICAL APPILCATION

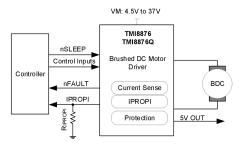
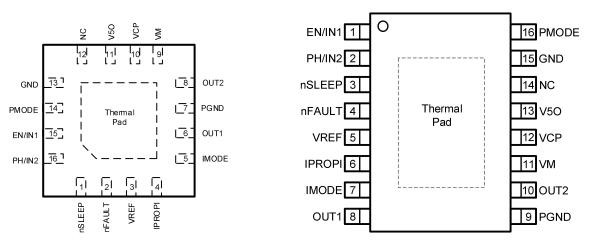


Figure 1. Basic Application Circuit

www.toll-semi.com

ABSOLUTE MAXIMUM RATINGS (Note 1)


Parameter	Min	Max	Unit
Power supply voltage (VM)	-0.3	40	V
Voltage difference between ground pins (GND, PGND)	-0.3	0.3	V
Logic input voltage (EN/IN1, PH/IN2, IMODE, nSLEEP, PMODE)	-0.3	6	V
Reference input pin voltage (VREF)	-0.3	6	V
Open-drain output pin voltage (nFAULT)	-0.3	6	V
Output pin voltage (OUT1, OUT2)	-0.7	VM+0.7	V
Proportional current output pin voltage (IPROPI)	-0.3	6	V
T _J , operating junction temperature (Note 2)	-40	150	°C
Storage temperature	-40	150	°C

ESD RATING

Items	Description	Value	Unit
V _{ESD}	Human body model for all pins	±2000	V

JEDEC specification JS-001

PACKAGE/ORDER INFORMATION

QFN3x3-16(Top View) TMI8876Q HTSSOP16 TMI8876

Part Number	Package	Top mark	Quantity/ Reel
TMI8876	HTSSOP16	TMI8876	4,000
1 1110070	П1330Р10	XXXXX	4,000
		TMI	
TMI8876Q	QFN3x3-16	8876Q	3,000
		XXXXX	

The TMI8876 and TMI8876Q devices are Pb-free and RoHS compliant.

PIN FUNCTIONS

Pin			Function
QFN	HTSSOP	Name	Function
1	3	nSLEEP	Sleep mode input. Logic high to enable device. Logic low to enter low-power sleep mode. Internal pulldown resistor.
2	4	nFAULT	Fault indicator output. Pulled low during a fault condition. Connect an external pullup resistor for open-drain operation.
3	5	VREF	External reference voltage input to set internal current regulation limit.
4	6	IPROPI	Analog current output proportional to load current.
5	7	IMODE	Current regulation and overcurrent protection mode set pin. Quad-level input.
6	8	OUT1	H-bridge output. Connect to the motor or other load.
7	9	PGND	Device power ground. Connect to system ground.
8	10	OUT2	H-bridge output. Connect to the motor or other load.
9	11	VM	4.5 to 37V power supply input. Connect a 0.1μ F bypass capacitor to ground, as well as a sufficient bulk capacitance rated for VM.
10	12	VCP	High side drive supporting voltage. Floating or connect a $0.1 \mu F$ ceramic capacitor to VM.
11	13	V5O	Built-in 5V reference voltage output.
12	14	NC	Not connected.
13	15	GND	Device ground. Connect to system ground.
14	16	PMODE	H-bridge control input mode. Tri-level input.
15	1	EN/IN1	H-bridge control input. Internal pulldown resistor.
16	2	PH/IN2	H-bridge control input. Internal pulldown resistor.
-	-	GND	Thermal pad. Connect to device power ground.

RECOMMENDED OPERATING CONDITIONS

Items	Description	Min	Max	Unit
VM	Power supply voltage range	4.5	37	V
VIN	Logic input voltage	0	5.5	V
f _{РWM}	PWM frequency	0	100	kHz
V _{OD}	Open drain pullup voltage	0	5.5	V
lod	Open drain output current	0	5	mA
Ι _{ουτ}	Peak output current	0	3.5	Α
IIPROPI	Current sense output current	0	3	mA
V _{VREF}	Current limit reference voltage	0	3.6	V

ELECTRICAL CHARACTERISTICS

T_A = 25°C, (unless otherwise noted.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLY (VM)		1				
VM operating voltage	VM		4.5		37	V
VM operating current	Іум	VM = 24V		2	5	mA
VM sleep current	I _{VMSLEEP}	VM = 24V, nSLEEP = 0V			5	μA
Turn-on time (Note 3)	t _{WAKE}	nSLEEP active			1	ms
Turn-off time	t _{SLEEP}	Sleep mode			1	ms
Output dead time	tDEAD	Body diode conducting		300		ns
Charge pump regulator voltage	V _{VCP}	VM=24V, VCP with respect to VM		5		V
Charge pump switching frequency	f _{VCP}			7.6		MHz
LOGIC-LEVEL INPUTS (IN1	, IN2, nSLE	EP)		1		1
Input logic low voltage	VIL		0		0.7	V
Input logic high voltage	VIH		1.5		5.5	V
Input logic hysteresis	V _{HYS}			0.25		V
Input logic low current	IIL	VIN = 0V	-5		6	μA
Input logic high current	Ін	VIN = 5V		50	75	μA
Pulldown resistance	R _{PD}	Pull down to GND		100		kΩ
TRI-LEVEL INPUTS (PMOD	E)	1			1	1
Tri-level input low voltage	V _{TIL}		0		0.65	V
Tri-level input Hi-Z voltage	V _{TIZ}		0.9		1.2	V
Tri-level input high voltage	V _{TIH}		1.5		5.5	V
Tri-level input low current	Ιτιι	VIN = 0V		-32		μA
Tri-level input Hi-Z current	I _{TIZ}	VIN = 1.1V	-5		5	μA
Tri-level input high current	Ітін	VIN = 5V			150	μA
Tri-level pull-down resistance	R _{TPD}	Pull down to GND		40		kΩ
Tri-level pull-up resistance	R _{TPU}	Pull up to internal 5V		156		kΩ
QUAD-LEVEL INPUTS (IMC	DDE)					
Quad-level input level 1	V _{QI2}	Voltage to set quad-level 1	0		0.45	V
Quad-level input level 2	R _{QI2}	Resistance to GND to set quad-level 2	18.6	20	21.4	kΩ
Quad-level input level 3	R _{QI3}	Resistance to GND to set quad-level 3		62	66.4	kΩ
Quad-level input level 4	V _{QI3}	Voltage to set quad-level 4	2.5		5.5	V
Quad-level pull-down resistance	RQPD	Pull down to GND		136		kΩ
Quad-level pull-up resistance	RQPU	Pull up to internal 5V		68		kΩ

www.toll-semi.com

ELECTRICAL CHARACTERISTICS (Continued)

T_A = 25°C, (unless otherwise noted.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
MOTOR DRIVER OUTPUTS (OUT1, OUT2	2)	1		1	
High-side FET on resistance	R _{(ON)_High}	VM = 24 V, I _{OUT} = 1A,		250		mΩ
Low-side FET on resistance	R(ON)_Low	VM = 24 V, I _{OUT} = 1A,		240		mΩ
Output dead time	t _{DEAD}	Body diode conducting		300		ns
Output rise time	t _{RISE}	VM = 24 V, OUTx rising 10% to 90%		165		ns
Output fall time	t _{FALL}	VM = 24 V, OUTx falling 90% to 10%		150		ns
Input to output propagation delay	t _{PD}	EN/IN1, PH/EN2 OUTx, 200Ω from OUTx to GND		650		ns
Body diode forward voltage	Vd	I _{OUT} = 1A		0.9		V
OPEN-DRAIN OUTPUTS (nFA	ULT)			•		
Output logic low voltage	Vol	I _{OD} = 5mA			0.7	V
Output logic high current	loz	V _{OD} = 5V	-2		2	μA
CURRENT REGULATION		-				
Current mirror scaling factor	A _{VIPRO}	VIPRO		1000		μΑ/Α
		I _{ОUT} < 0.15 A,	-7.5		7.5	mA
		$5.5 \text{ V} \leq \text{V}_{\text{VM}} \leq 37 \text{ V}$	-7.5		7.5	
		0.15 A ≤ I _{OUT} < 0.5 A,	-4		4	%
		5.5 V ≤ V _{VM} ≤ 37 V				
		0.5 A ≤ I _{OUT} ≤ 2 A, 5.5 V ≤				
		$V_{VM} \le 37 V$, HTSSOP, -40°C	3		3	%
Current mirror scaling error	A _{ERR}	≤ T _J < 125℃				
		0.5 A ≤ I _{OUT} ≤ 2 A, 5.5 V ≤				
		V _{VM} ≤ 37 V, HTSSOP, 125°C	-4		4	%
		$\leq T_{\rm J} \leq 150^{\circ} {\rm C}$				
		$0.5 \text{ A} \le I_{\text{OUT}} \le 2 \text{ A}, 5.5 \text{ V} \le$				0/
		$V_{VM} \le 37 \text{ V}, \text{ RGT}, 125^{\circ}\text{C} \le T_{J}$	-6		6	%
PWM off-time	+	≤ 150°C		25		
Current sense delay time	t _{OFF}			25		μs
•						μs
Current regulation deglitch time	t _{DEG}			1.2		μs
PWM blanking time	t _{BLANK}			3.5		μs
Built-in 5V REGULATION		_				
Built-in 5V regulator output voltage	V _{V50}	External Load 0 to 30mA		5		V

ELECTRICAL CHARACTERISTICS (Continued)

T_A = 25°C, (unless otherwise noted.)

		TEST CONDITIONS	MAINI	TVD		LINUT		
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
PROTECTION CIRCUITS								
	VUVLO_fall	VM falls until UVLO triggers			4.2	V		
VM undervoltage lockout	VUVLO_rise	VM rises until operation	4.6			v		
	V UVLO_rise	recovers	4.0			v		
VM undervoltage hysteresis	V _{UV_HYS}	Rising to falling		140		mV		
OCP trip level	I _{OCP}		3.5	5.6		А		
Overcurrent deglitch time	t _{OCP}			5		μs		
Overcurrent retry time	tRETRY			1.7		ms		
Thermal shutdown threshold	T _{SD} (Note 4)			150		°C		
Thermal shutdown hysteresis	T _{HYS (Note 4)}			33		°C		

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: T_J is calculated from the ambient temperature T_A and power dissipation P_D according to the following formula: $T_J = T_A + P_D \ge \theta_{JA}$. The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_{D (MAX)} = (T_{J(MAX)}-T_A)/\theta_{JA}$.

Note 3: t_{WAKE} applies when the device initially powers up, and when it exits sleep mode.

Note 4: Thermal shutdown threshold and hysteresis are guaranteed by design.

OPERATION

Overview

The TMI8876/Q device is a brushed DC motor driver that operates from 4.5V to 37V supporting a wide range of output load currents for various types of motors and loads. The device integrates an H-bridge output power stage that can be operated in different control modes set be the PMODE pin setting. This allows for driving a single bidirectional brushed DC motor, two unidirectional brushed DC motors, or other output load configurations. The device integrates a charge pump regulator to support more efficient high-side N-channel MOSFETs and 100% duty cycle operation. The device operates off a single power supply input (VM) which can be directly connected to a battery or DC voltage supply. The nSLEEP pin provides an ultra-low power mode to minimize current draw during system inactivity.

The TMI8876/Q device also integrates output current sensing using current mirrors on the low-side power MOSFETs. A proportional current is then sent out on the IPROPI pin and can be converted to a proportional voltage using an external resistor (R_{IPRO}). The integrated current sensing allows the TMI8876/Q to limit the output current with a fixed off-time PWM chopping scheme and provide load information to the external controller to detect change in load or stall conditions. The integrated current sensing out performs traditional external shunt resistor sensing by providing current information even during the off-time slow decay recirculating period and removing the need for an external power shunt resistor. The off-time PWM current regulation level can be configured during motor operation through the VREF pin to limit the load current accordingly to the system demands.

A variety of integrated protection features protect the device in the case of a system fault. These include undervoltage lockout (UVLO), charge pump undervoltage (CPUV), overcurrent protection (OCP), and overtemperature shutdown (TSD). Fault conditions are indicated on the nFAULT pin.

Control Modes

The TMI8876/Q provides three modes to support different control schemes with the EN/IN1 and PH/IN2 pins. The control mode is selected through the PMODE pin with either logic low, logic high, or setting the pin Hi-Z as shown in Table 1. The PMODE pin state is latched when the device is enabled through the nSLEEP pin. The PMODE state can be changed by taking the nSLEEP pin logic low, waiting the t_{SLEEP} time, changing the PMODE pin input, and then enabling the device by taking the nSLEEP pin back logic high.

PMODE STATE	CONTROL MODE					
PMODE = Logic Low	PH/EN					
PMODE = Logic High	PWM					
PMODE = Hi-Z	Independent Half-Bridge					

Table	1	PMODE	Functions
Iable		FINIODE	i uncuons

The inputs can accept static or pulse-width modulated (PWM) voltage signals for either 100% or PWM drive modes. The device input pins can be powered before VM is applied with no issues. By default, the EN/IN1 and PH/IN2 pins have an internal pulldown resistor to ensure the outputs are Hi-Z if no inputs are present.

The sections below show the truth table for each control mode. Note that these tables do not take into account the internal current regulation feature. Additionally, the TMI8876/Q automatically handles the dead-time generation when switching between the high-side and low-side MOSFET of a half-bridge.

PH/EN Control Mode (PMODE = Logic Low)

When the PMODE pin is logic low on power up, the device is latched into PH/EN mode. PH/EN mode allows for the H-bridge to be controlled with a speed and direction type of interface. The truth table for PH/EN mode is shown in Table 2.

nSLEEP	EN	PH	OUT1	OUT2	DESCRIPTION
0	Х	Х	High-Z	High-Z	Sleep
1	0	Х	L	L	Brake
1	1	0	L	Н	Reverse
1	1	1	н	L	Forward

Table 2. PH/EN Control Mode

PWM Control Mode (PMODE = Logic High)

When the PMODE pin is logic high on power up, the device is latched into PWM mode. PWM mode allows for the H-bridge to enter the Hi-Z state without taking the nSLEEP pin logic low. The truth table for PWM mode is shown in Table 3.

nSLEEP	IN1	IN2	OUT1	OUT2	DESCRIPTION			
0	X	Х	High-Z	High-Z	Sleep			
1	0	0	High-Z	High-Z	Coast			
1	0	1	L	Н	Reverse			
1	1	0	Н	L	Forward			
1	1	1	L	L	Brake			

Table 3. PWM Control Mode

Independent Half-Bridge Control Mode (PMODE = Hi-Z)

When the PMODE pin is Hi-Z on power up, the device is latched into independent half-bridge control mode. This mode allows for each half-bridge to be directly controlled in order to support high-side slow decay or driving two independent loads. The truth table for independent half-bridge mode is shown in Table 4.

In independent half-bridge control mode, current sensing and feedback are still available, but the internal current regulation is disabled since each half-bridge is operating independently. Additionally, if both low-side MOSFETs are conducting current at the same time, the IPROPI scaled output will be the sum of the currents.

nSLEEP	INx	OUTx	DESCRIPTION
0	Х	High-Z	Sleep
1	0	L	OUTx Low-Side On
1	1	Н	OUTx High-Side On

Table 4. Independent Half-Bridge Control Mode

www.toll-semi.com

Current Sensing

The TMI8876/Q integrates current sensing, regulation, and feedback. These features allow for the device to sense the output current without an external sense resistor or sense circuitry reducing system size, cost, and complexity. This also allows for the device to limit the output current in the case of motor stall or high torque events and give detailed feedback to the controller about the load current through a current proportional output.

Current Regulation

The TMI8876/Q device integrates current regulation using either a fixed off-time or cycle-by-cycle PWM current chopping scheme. The current chopping scheme is selectable through the IMODE quad-level input. This allows the devices to limit the output current in case of motor stall, high torque, or other high current load events.

The IMODE level can be set by leaving the pin floating (Hi-Z), connecting the pin to GND, or connecting a resistor between IMODE and GND. The IMODE pin state is latched when the device is enabled through the nSLEEP pin. The IMODE state can be changed by taking the nSLEEP pin logic low, waiting the t_{SLEEP} time, changing the IMODE pin input, and then enabling the device by taking the nSLEEP pin back logic high. The IMODE input is also used to select the device response to an overcurrent event.

The internal current regulation can be disabled by tying IPROPI to GND and setting the VREF pin voltage greater than GND (if current feedback isn't required) or if current feedback is required, setting VVREF and RIPROPI such that VIPROPI never reaches the VVREF threshold. In independent half-bridge control mode (PMODE = Hi-Z), the internal current regulation is automatically disabled since the outputs are operating independently and the current sense and regulation is shared between half-bridges.

		IMODE FU	NCTION	nFAULT	
IMODE	IMODE STATE		Overcurrent	Response	
		Chopping Mode	Response	Ксэронэс	
Quad-Level 1	$R_{IMODE}=GND$	Fixed Off-Time	Automatic Retry	Overcurrent Only	
Quad-Level 2	R _{IMODE} =20kΩ		Automotic Dota	Current Chopping	
Quad-Level 2	to GND	Cycle-By-Cycle	Automatic Retry	and Overcurrent	
Quad-Level 3	R_{IMODE} =62k Ω	Cuelo By Cuelo	Latched Off	Current Chopping	
Quad-Level 3	to GND Cycle-By-Cycle L		Latched Off	and Overcurrent	
Quad-Level 4	R _{IMODE} =Hi-Z	Fixed Off-Time	Latched Off	Overcurrent Only	

Та	ble	5.	IMODE	E Functions
----	-----	----	-------	-------------

In TMI8876/Q, motor peak current can be limited by the analog reference input VREF and the resistance of external sense resistor on the IPROPI pin according to the below equation:

VREF (V)

 $I_{\text{TRIP}}(A) = \frac{1}{A_{\text{IPROPI}}(\mu A/A) \times R_{\text{IPROPI}}(\Omega)}$

For example, if $V_{VREF} = 2.5 \text{ V}$, $R_{IPROPI} = 2000 \Omega$, and $A_{IPROPI} = 1000 \mu A/A$, then I_{TRIP} will be approximately 1.25 A.

VM Undervoltage Lockout (UVLO)

If at any time the voltage on the VM pin falls below the undervoltage-lockout threshold voltage, all FETs in the H-bridge will be disabled. Operation resumes when VM rises above the UVLO threshold.

Overcurrent Protection (OCP)

If the output current exceeds the OCP threshold, I_{OCP} , for longer than t_{OCP} , all FETs in the H-bridge are disabled.

As to TMI8876/Q, after a duration of t_{RETRY} , the H-bridge is re-enabled according to the state of the INx pins. If the overcurrent fault is still present, the cycle repeats, otherwise normal device operation resumes.

Thermal Shutdown (TSD)

If the die temperature exceeds safe limits, all FETs in the H-bridge are disabled. After the die temperature has fallen to a safe level, operation automatically resumes.

Device Functional Modes

The TMI8876/Q device can be used in multiple ways to drive a brushed DC motor.

Control with Current Regulation

This scheme uses all of the capabilities of the device. The I_{TRIP} current is set above the normal operating current, and high enough to achieve an adequate spin-up time, but low enough to constrain current to a desired level. Motor speed is controlled by the duty cycle of one of the inputs, while the other input is static. Brake or slow decay is typically used during the off-time.

Control Without Current Regulation

If current regulation is not required, the IPROPI pin should be directly connected to the PCB ground plane. The VREF voltage must still be 0.3V to 5 V, and larger voltages provide greater noise margin. This mode provides the highest-possible peak current which is up to 3.5 A for a few hundred milliseconds (depending on PCB characteristics and the ambient temperature). If current exceeds 3.5 A, the device might reach overcurrent protection (OCP) or overtemperature shutdown (TSD). If that happens, the device disables and protects itself for about 2ms (t_{RETRY}) and then resumes normal operation.

Static Inputs with Current Regulation

The IN1 and IN2 pins can be set high and low for 100% duty cycle drive, and I_{TRIP} can be used to control the current of the motor, speed, and torque capability.

VM Control

In some systems, varying VM as a means of changing motor speed is desirable.

www tol	l-semi.com
	001111.00111

APPLICATION INFORMATION

Application information

The TMI8876/Q device is typically used to drive one brushed DC motor as below

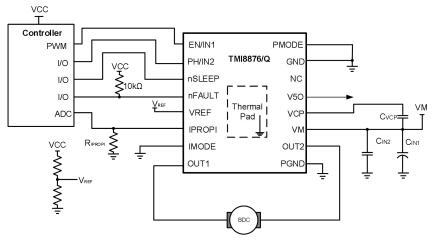


Figure 2. TMI8876/Q Typical Application

TMI8876 TMI8876Q

Block Diagram

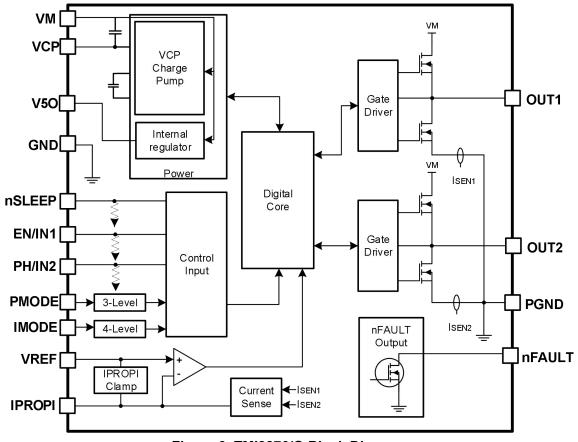
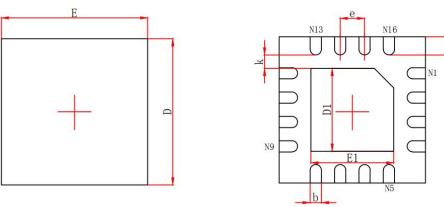
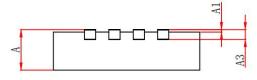



Figure 3. TMI8876/Q Block Diagram


PACKAGE INFORMATION

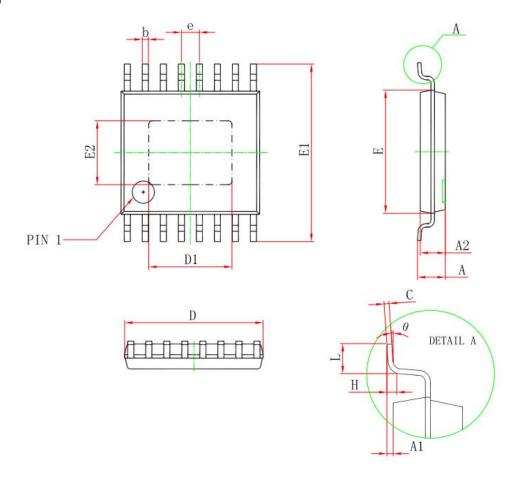
QFN3x3-16

Top View

Side View

Unit: mm

Symbol	Dimensions In Millimeters		Symbol	Dimensions In Millimeters		
	Min	Max	Symbol	Min	Max	
A	0.70	0.80	E1	1.60	1.80	
A1	-	0.05	k	0.2MIN		
A3	0.203	REF	е	0.50	TYP	
D	2.90	3.10	b	0.18	0.30	
E	2.90	3.10	L	0.30	0.50	
D1	1.60	1.80				


Note:

- 1) All dimensions are in millimeters.
- 2) Package length does not include mold flash, protrusion or gate burr.
- 3) Package width does not include inter lead flash or protrusion.
- 4) Lead popularity (bottom of leads after forming) shall be 0.10 millimeters max.
- 5) Pin 1 is lower left pin when reading top mark from left to right.

PACKAGE INFORMATION

HTSSOP16

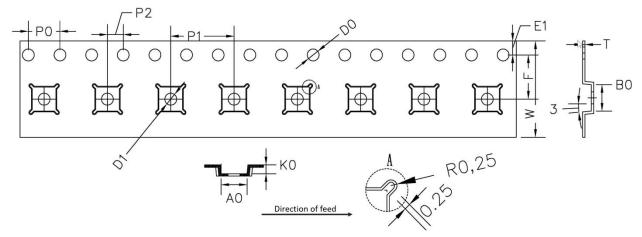
U	n	it:	m	m
-	•••			

Symbol	Dimensions In Millimeters		Symbol	Dimensions In Millimeters		
Symbol	Min	Max	Symbol	Min	Max	
D	4. 90	5. 10	A2	0.80	1.00	
D1	2.90	3.10	E2	2.20	2.40	
E	4.30	4.50	AI	0.02	0. 15	
b	0. 19	0. 30	е	0.65 BSC		
С	0. 09	0. 20	L	0.50	0.70	
EI	6.25	6.55	Н	0.25 TYP		
А		1.15	θ	1°	7°	

Note:

1) All dimensions are in millimeters.

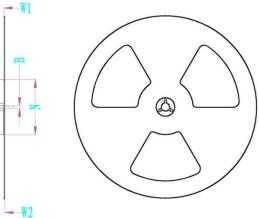
2) Package length does not include mold flash, protrusion or gate burr.


- 3) Package width does not include inter lead flash or protrusion.
- 4) Lead popularity (bottom of leads after forming) shall be 0.10 millimeters max.
- 5) Pin 1 is lower left pin when reading top mark from left to right.

www.toll-semi.c	<u>~</u> m
www.ton-serm.c	

TAPE AND REEL INFORMATION

TAPE DIMENSIONS: QFN3x3-16



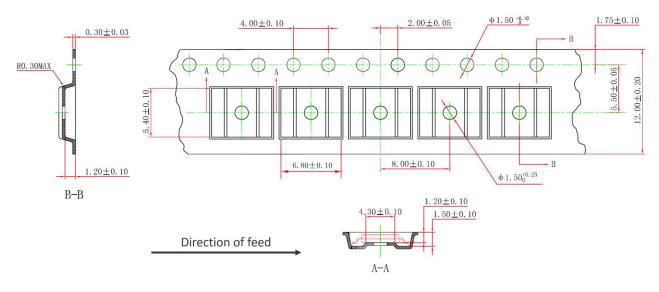
Unit: mm

Symbol	Dimensions	Symbol	Dimensions	Symbol	Dimensions	Symbol	Dimensions
A0	3.30±0.10	P0	4.00±0.10	E1	1.75±0.10	D1	1.55±0.05
B0	3.30±0.10	P1	8.00±0.10	F	5.50±0.10	Т	0.30±0.05
K0	1.10±0.10	P2	2.00±0.10	D0	1.55±0.05	W	12.00±0.30

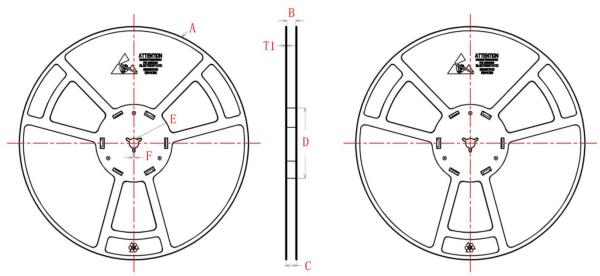
REEL DIMENSIONS: QFN3x3-16

Unit: mm

					••••••
ØA	В	ØC	ØN	W1	W2
330±1.0	4.7±0.5	13.5±0.2	100±0.5	13.4±0.5	17.4±0.5


Note:

- 1) All Dimensions are in Millimeter
- 2) Quantity of Units per Reel is 3000
- 3) MSL level is level 3.



TAPE AND REEL INFORMATION

TAPE DIMENSIONS: HTSSOP16

REEL DIMENSIONS: HTSSOP16

Unit: mm

Α	В	С	D	Е	F	T1
Ø 330±1.0	12.4 ^{+1.0} _{-0.0}	17.6 ^{+1.0}	Ø 100.0±0.5	Ø 13.0±0.2	1.9±0.4	1.9±0.2

Note:

- 1) All Dimensions are in Millimeter
- 2) Quantity of Units per Reel is 4000
- 3) MSL level is level 3.

Important Notification

This document only provides product information. Xi'an TOLL Microelectronic Inc. (TMI) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time.

Xi'an TOLL Microelectronic Inc. (TMI) cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a TMI product. No circuit patent licenses are implied.

All rights are reserved by Xi'an TOLL Microelectronic Inc. http:// www.toll-semi.com

TMÍ SUNTO