

SGM42610/SGM42611 Stepper Motor Driver ICs

GENERAL DESCRIPTION

The SGM42610/SGM42611 can drive solenoids, two DC motors, one DC motor in parallel connection, as well as a stepper motor in full-step or half-step. The devices can operate over a wide input voltage range of 2.5V to 16V.

Two versions (SGM42611A and SGM42611B) of the SGM42611 are offered. The SGM42611B has low power sleep mode which is provided to save power dissipation. If the EN pin is pulled low, the SGM42611B will enter into sleep mode after t_{SLEEP} .

The SGM42610 and SGM42611 are available in Green MSOP-10 (Exposed Pad) and SSOP-10 packages.

FEATURES

- SGM42610: Quad Half-Bridge Driver
- SGM42611A: 4-Wire Input Stepper Driver
- SGM42611B: 2-Wire Input Stepper Driver
- Supply Voltage Range: 2.5V to 16V
- Integrated Protection Features
 - VCC Under-Voltage Lockout (UVLO)
 - Over-Current Protection (OCP)
 - Thermal Shutdown (TSD)
 - Short-Circuit Protection (SCP)
 - Auto-Retry
- Low Power Sleep Mode (SGM42611B Only)
- Available in Green MSOP-10 (Exposed Pad) and SSOP-10 Packages

APPLICATIONS

Refrigerator Clothes Dryer Vacuum Cleaner Scanner Printer PoE Point of Sales Terminal Time Recorder

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM42610	MSOP-10 (Exposed Pad)	-40℃ to +85℃	SGM42610YPMS10G/TR	SGMRA0 YPMS10 XXXX	Tape and Reel, 4000
3GIVI42010	SSOP-10	-40℃ to +85℃	SGM42610YSS10G/TR	SGM42610 YSS10 XXXXX	Tape and Reel, 4000
SGM42611A	MSOP-10 (Exposed Pad)	-40℃ to +85℃	SGM42611AYPMS10G/TR	SGMRA1 YPMS10 XXXX	Tape and Reel, 4000
3GM42011A	SSOP-10	-40℃ to +85℃	SGM42611AYSS10G/TR	SGM42611A YSS10 XXXXX	Tape and Reel, 4000
SGM42611B	MSOP-10 (Exposed Pad)	-40℃ to +85℃	SGM42611BYPMS10G/TR	SGMRA2 YPMS10 XXXX	Tape and Reel, 4000
3GIVI4201 IB	SSOP-10	-40℃ to +85℃	SGM42611BYSS10G/TR	SGM42611B YSS10 XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXX = Date Code, Trace Code. XXXXX = Date Code, Trace Code and Vendor Code.
MSOP-10 (Exposed Pad)
SSOP-10

XXXX

Trace Code

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage, V _{CC}	0.3V to 20V
Output Voltage, V _{OUT}	0.3V to V_{CC} + 0.3V
Logic Input Voltage, V _{IN}	0.3V to 6V
Junction Temperature	+150℃
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	8000V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Power Supply Voltage, V _{CC}	.2.5V to 16V
Logic Input Voltage, V _{IN}	0V to 5.5V
Continuous DC/RMS Output Current per Bridge	0.85A
Operating Temperature Range40)°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to

absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

MSOP-10 (Exposed Pad)

6 GND

PIN CONFIGURATIONS

SG Micro Corp

FAULT 5

PIN DESCRIPTION

PIN	NAME	TYPE	FUNCTION
SGM42	2610		•
1	VCC	Р	Supply Voltage. Connect a 10μ F (MIN) bulk capacitor and a 100 nF ceramic bypass capacitor between this pin and GND.
2	IN1	Ι	Bridge Input 1. Logic input for OUT1, internal pull-down.
3	IN2	Ι	Bridge Input 2. Logic input for OUT2, internal pull-down.
4	IN3	Ι	Bridge Input 3. Logic input for OUT3, internal pull-down.
5	IN4/FAULT	I/O	Bridge Input 4 or Alert Output (TSD, OCP). Logic input for OUT4, internal pull-down. If this pin is pulled high more than t_{FAULT} , it can be used to alert output.
6	GND	G	Ground.
7	OUT4	0	
8	OUT3	0	
9	OUT2	0	Output of the Bridge. Connect to motor winding.
10	OUT1	0	
SGM42	2611A		
1	VCC	Р	Supply Voltage. Connect a 10µF (MIN) bulk capacitor and a 100nF ceramic bypass capacitor between this pin and GND.
2	IN1	I	Bridge Input 1. Logic input for OUT1 and OUT2, internal pull-down.
3	IN2	Ι	Bridge Input 2. Logic input for OUT1 and OUT2, internal pull-down.
4	IN3	Ι	Bridge Input 3. Logic input for OUT3 and OUT4, internal pull-down.
5	IN4/FAULT	I/O	Bridge Input 4 or Alert Output (TSD, OCP). Logic input for OUT3 and OUT4, internal pull-down. If this pin is pulled high more than t _{FAULT} , it can be used to alert output.
6	GND	G	Ground.
7	OUT4	0	
8	OUT3	0	
9	OUT2	0	Output of the Bridge. Connect to motor winding.
10	OUT1	0	
SGM42	2611B		
1	VCC	Р	Supply Voltage. Connect a 10µF (MIN) bulk capacitor and a 100nF ceramic bypass capacitor between this pin and GND.
2	EN	Ι	Enable or Sleep Mode Input. Logic high on this pin enables the device. After the EN pin is pulled low more than t _{SLEEP} , the output drivers are disabled and the device will enter into a low power sleep mode, internal pull-down.
3	IN1	Ι	Bridge Input 1. H-bridge 1 PWM input controls the state of OUT1 and OUT2, internal pull-down.
4	IN2	I	Bridge Input 2. H-bridge 2 PWM input controls the state of OUT3 and OUT4, internal pull-down.
5	FAULT	0	Alert Output (TSD, OCP).
6	GND	G	Ground.
7	OUT4	0	
8	OUT3	0	1
9	OUT2	0	Output of the Bridge. Connect to motor winding.
10	OUT1	0	1

NOTE: I: input, O: output, I/O: input or output, G: ground, P: power for the circuit.

ELECTRICAL CHARACTERISTICS

(V_{CC} = 12V, C_{VCC} = 10µF//100nF, T_J = -40°C to +85°C, typical values are at T_J = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDIT	IONS	MIN	TYP	MAX	UNITS	
Power Supplies								
Power Supply Voltage	V _{cc}			2.5		16	V	
		V _{cc} rising				2.35		
VCC Under-Voltage Lockout Threshold	V _{UVLO}	V _{cc} falling	1.85			V		
VCC Under-Voltage Lockout Hysteresis	V _{HYS}				200		mV	
Denne Denne I. Denne I			T _J = +25°C		100	170		
Power Supply Current	Ivcc	V_{cc} = 16V, INx = floating	$T_J = -40^{\circ}C$ to $+85^{\circ}C$			210	μA	
Sleen Mede Supply Current		SGM42611B, V _{cc} = 16V,	T _J = +25°C		1.1	1.5		
Sleep Mode Supply Current	IVCCQ	INx = EN = floating	T _J = -40°C to +85°C			3	μA	
Turn-On Time ⁽¹⁾	t _{ON}	V _{CC} > V _{UVLO}	·		55		μs	
Logic Level Inputs								
Input Logic Low Voltage	V _{IL}					0.45	V	
Input Logic High Voltage	VIH			1.5			V	
EN Input Logic Low Voltage	V _{ENL}					0.35	V	
EN Input Logic High Voltage	V _{ENH}			1.5			V	
Input Logic Low Current	I _{IL}	V _{IN} = 0V				±1	μA	
Input Logic High Current	I _{IH}	V _{IN} = 3.3V			36	65	μA	
Pull-Down Resistance	R _{PD}				100		kΩ	
Propagation Delay	t _{PD}			400		ns		
Off-State Leakage Current	I _{OFF}				±1	μA		
Sleep Mode (SGM42611B Only)	•							
Time to Enter Sleep Mode	t _{SLEEP}				5.5	9	ms	
Wake Time	t _{WAKE}	EN inactive high to H-bridge	on		35		μs	
Motor Driver Outputs (OUTx)	1							
	_	0.054	T _J = +25°C		1.07	1.7		
High-side FET On-Resistance	R _{DSONH}	Ι _{ΟUT} = 0.85Α	$T_J = -40^{\circ}C$ to $+85^{\circ}C$			2.7	Ω	
	_		T _J = +25°C		0.47	0.75		
Low-side FET On-Resistance		I _{OUT} = -0.85A	$T_J = -40^{\circ}C$ to $+85^{\circ}C$			1.1	Ω	
Output Dead Time	t _{DEAD}		·		200		ns	
Dedu Diede Ferningel Velterin			T _J = +25°C		0.96	1.15		
Body Diode Forward Voltage	VD	SGM42611A, I _{OUT} = 0.85A	$T_J = -40^{\circ}C$ to +85°C			1.65	V	
FAULT Output (Open-Drain Output)			·			•		
Output Low Voltage	V _{OL}	V_{CC} = 2.5V, I_{FAULT} = -1mA			0.39	0.6	V	
Protection Circuits						•		
Over-Current Protection Trip Level	I _{OCP}	T _J = +25°C		0.85	1.4		Α	
Over-Current Deglitch Time	t _{OCP}				2		μs	
Over-Current Auto-Retry Time	t _{RETRY}				10		ms	
FAULT Ready Time	t _{FAULT}				45		ms	
Thermal Shutdown Temperature	T _{TSD}				160		°C	
Thermal Shutdown Temperature Hysteresis	T _{HYS}				50		°C	

NOTE: 1. t_{ON} applies when the device initially powers up.

TYPICAL PERFORMANCE CHARACTERISTICS

 T_J = +25°C, V_{CC} = 12V, C_{VCC} = 10 $\mu F//100nF,$ unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 T_J = +25°C, V_{CC} = 12V, C_{VCC} = 10 $\mu F//100nF,$ unless otherwise noted.

SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 T_J = +25°C, V_{CC} = 12V, C_{VCC} = 10 $\mu F//100nF,$ unless otherwise noted.

TRUTH TABLES

Table 1. SGM42610 Half-Bridge Driver

Inputs	Outputs
Н	н
L	L
PWM	PWM

Table 2. SGM42611A Logic Truth Table (DC Motor Driver)

	Inputs			Outputs			Eurotion		
IN1	IN2	IN3	IN4	OUT1	OUT2	OUT3	OUT4	Function	
L	L	L	L	Off	Off	Off	Off	Star	ndby
L	L			Off	Off				Standby
Н	L			Н	L			Channel 1	Forward
L	Н	_	_	L	н		_		Reverse
Н	Н			L	L				Brake
		L	L			Off	Off		Standby
		Н	L			Н	L	Channel 2	Forward
_	_	L	Н	_	_	L	н	Channel 2	Reverse
		Н	Н			L L			Brake

Full-Step Mode

Figure 1. SGM42611A Current Wave Type in Full-Step Mode When Stepper Motor Parallel Input is Controlled

Half-Step Mode

SG Micro Corp

TRUTH TABLES (continued)

Table 3. SGM42611B Logic Truth Table (DC Motor Driver)

	Inputs			Outputs				ation
EN	IN1	IN2	OUT1	OUT2	OUT3	OUT4	Function	
L	х	х	Off	Off	Off	Off	Standby/Low P	ower Sleep Mode
	L		Н	L	_		Channel 1	Forward
	Н	_	L	Н	_	_	Channel 1	Reverse
н		L			H L		Channel 2	Forward
		Н			L	н	Channel 2	Reverse

Full-Step Mode

Figure 3. SGM42611B Current Wave Type in Full-Step Mode When Stepper Motor Parallel Input is Controlled

FUNCTIONAL BLOCK DIAGRAMS

DETAILED DESCRIPTION

IN/FAULT Operation

For SGM42610/11A, IN4/FAULT is an enable input or alert output pin. If this pin is pulled high more than t_{FAULT} , it can be used to alert output; in other cases, this pin is just as logic input controls state of OUTx.

For SGM42611B, the FAULT is a separate fault flag pin. When OCP or TSD occurs, the FAULT pin will be driven low.

Under-Voltage Lockout (UVLO)

If at any time, the voltage on the VCC pin falls below the under-voltage lockout threshold, all output drivers are disabled, and all internal logic will be reset. Operation will resume when V_{CC} rises above the UVLO threshold. The FAULT pin is not driven low in the event of an under-voltage condition.

EN Operation

The EN pin of SGM42611B is an enable or sleep mode input. When the EN pin is logic low for less than t_{SLEEP} , all output drivers are disabled, as shown in Table 3. After the EN pin is pulled low more than t_{SLEEP} , the device will enter into a low power sleep mode. In this state, the output drivers are disabled, all internal logic is reset, and internal clocks are stopped. All inputs are ignored until EN returns inactive high. The internal pull-down resistor of EN pin is approximately 100k Ω . The FAULT pin is not driven low in the event of a low power sleep mode.

Over-Current Protection (OCP)

An analog current limit circuit on each MOSFET limits the current through the MOSFET by limiting the gate drive. If this analog current limit persists for longer than the OCP deglitch time (t_{OCP}), all MOSFETs in the H-bridge will be disabled and the FAULT pin will be driven low. The driver will be re-enabled after the OCP retry period (t_{RETRY}) has passed. If the fault condition is still present, the cycle repeats. If the fault is no longer present, normal operation resumes and the FAULT pin becomes high again after 2ms. Please note that only the H-bridge in which the OCP is detected will be disabled while the other H-bridge will function normally (OUT1 and OUT2 form an H-bridge, OUT3 and OUT4 form another H-bridge).

Over-current conditions are detected independently on both high-side and low-side devices. For example, a short across the motor winding will all result in an over-current shutdown.

Thermal Shutdown (TSD)

If the die temperature exceeds safe limit, all output drivers are disabled and the FAULT pin will be driven low. Once the die temperature has fallen to a safe level operation will automatically resume.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes	from	Original	(APRIL	2022) to	REV.A
enangee		enginai			

Changed from product preview to production dataAll	

Page

PACKAGE OUTLINE DIMENSIONS

MSOP-10 (Exposed Pad)

RECOMMENDED LAND PATTERN (Unit: mm)

Sympol	Dimensions In Millimeters							
Symbol	MIN	MOD	МАХ					
А	0.820	-	1.100					
A1	0.020	-	0.150					
A2	0.750	-	0.950					
b	0.170	-	0.280					
С	0.080	-	0.230					
D	2.900	-	3.100					
D1	1.700	-	2.416					
E	2.900	-	3.100					
E1	4.750	-	5.050					
E2	1.450	-	1.730					
е	0.500 BSC							
L	0.400	-	0.800					
θ	0°	-	8°					

NOTES:

1. Body dimensions do not include mode flash or protrusion.

2. This drawing is subject to change without notice.

PACKAGE OUTLINE DIMENSIONS

SSOP-10

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In Millimeters						
Symbol	MIN	MOD	МАХ				
A	1.350	-	1.750				
A1	0.100	-	0.250				
A2	1.350	-	1.550				
b	0.300	-	0.450				
С	0.170	-	0.250				
D	4.700	-	5.100				
E	3.800	-	4.000				
E1	5.800	-	6.200				
е	1.000 BSC						
L	0.400	-	1.270				
θ	0°	-	8°				

NOTES:

1. Body dimensions do not include mode flash or protrusion.

2. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
MSOP-10 (Exposed Pad)	13″	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1
SSOP-10	13″	12.4	6.60	5.30	1.90	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

