

SGM12033A 0.4GHz to 5.8GHz, 3P3T Switch with MIPI RFFE Interface

GENERAL DESCRIPTION

The SGM12033A is a three-pole/three-throw (3P3T) addressable switch, which supports a wide operating frequency from 0.4GHz to 5.8GHz. The device provides low insertion loss and high isolation performance. These specifications make the device appropriate for 2G/3G/4G/5G applications, which need high power processing and high linearity.

The device has the ability to integrate serial control system compatible with RFFE standard. Internal driver and decoder for switch control signals are offered by the controller, which makes it flexible in RF path routing and bands selection.

No external DC blocking capacitors required on the RF paths as long as no external DC voltage is applied, which can save PCB area and cost.

The SGM12033A is available in a Green ULGA-2×2-16AL package.

APPLICATIONS

Antenna Swapping 5G SRS Applications

FEATURES

- Operating Frequency Range: 0.4GHz to 5.8GHz
- Low Insertion Loss
- Input 0.1dB Compression Point: 38dBm
- High Isolation
- MIPI RFFE V2.1 Interface Compatible
- No External DC Blocking Capacitors Required
- Available in a Green ULGA-2×2-16AL Package

BLOCK DIAGRAM

Figure 1. SGM12033A Block Diagram

SGM12033A

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE SPECIFIED		ORDERING	PACKAGE	PACKING	
	DESCRIPTION RANGE		NUMBER	MARKING	OPTION	
SGM12033A	ULGA-2×2-16AL	-40°C to +85°C	SGM12033AYULR16G/TR	GJN XXXX	Tape and Reel, 3000	

MARKING INFORMATION

NOTE: XXXX = Date Code, Trace Code and Vendor Code.

YYY— Serial Number

XXXX

.

Vendor Code

Trace Code

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

~ - . .

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{IO}	2.5V
SDA, SCL and USID Control Voltage	2.5V
RF Input Power, P _{IN}	38dBm
Junction Temperature	+150℃
Storage Temperature Range55°C to	o +150℃
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	2000V
CDM	2000V

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range	40°C to +85°C
Operating Frequency Range	0.4GHz to 5.8GHz
Supply Voltage, V _{IO}	1.65V to1.95V
SDA, SCL High Voltage	(0.8 × V_{IO}) to V_{IO}
SDA, SCL Low Voltage	0V to $(0.2 \times V_{IO})$
USID Control Voltage	0V to V_{IO}

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

SGM12033A

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1, 3, 11, 13, 15	GND	Ground.
2	RFIN2	RFIN Port 2.
4	RFIN1	RFIN Port 1.
5	NC	No Connection.
6	VIO	Supply Voltage.
7	SDA	RFFE Data Signal.
8	SCL	RFFE Clock Signal.
9	USID	RFFE USID Select Pin.
10	RFOUT1	RFOUT Port 1.
12	RFOUT2	RFOUT Port 2.
14	RFOUT3	RFOUT Port 3.
16	RFIN3	RFIN Port 3.
Exposed Pad	GND	Ground.

Register_0 TRUTH TABLE

Table 1. Register_0 Truth Table

State	Mode	Register_0 Bits								
State	WOde	D7	D6	D5	D4	D3	D2	D1	D0	
1	RFIN1 Isolation	х	х	х	х	х	0	0	0	
2	RFIN1 to RFOUT1	х	х	х	х	х	0	0	1	
3	RFIN1 to RFOUT2	х	х	х	х	х	0	1	0	
4	RFIN1 to RFOUT3	х	х	х	х	х	0	1	1	
5	RFIN2 Isolation	х	х	0	0	0	х	х	х	
6	RFIN2 to RFOUT1	х	х	0	0	1	х	х	х	
7	RFIN2 to RFOUT2	х	х	0	1	0	х	х	х	
8	RFIN2 to RFOUT3	х	х	0	1	1	х	х	х	

Register_1 TRUTH TABLE

Table 2. Register_1 Truth Table

State	Mode	Register_1 Bits								
State		D7	D6	D5	D4	D3	D2	D1	D0	
1	RFIN3 Isolation	х	х	х	х	х	0	0	0	
2	RFIN3 to RFOUT1	х	х	х	х	х	0	0	1	
3	RFIN3 to RFOUT2	х	х	х	х	х	0	1	0	
4	RFIN3 to RFOUT3	х	х	х	х	х	0	1	1	

NOTE: x = Either 0 or 1.

ELECTRICAL CHARACTERISTICS

 $(T_A = +25^{\circ}C, V_{IO} = 1.65V \text{ to } 1.95V \text{, typical values are at } V_{IO} = 1.8V, V_{IH} = 1.8V, V_{IL} = 0V, P_{IN} = 0dBm, VSWR = 1:1, unless otherwise noted.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC Characteristics						
Supply Voltage	V _{IO}		1.65	1.8	1.95	V
Supply Current	I _{VIO}			100	160	μA
Turn-On Time	t _{ON}	50% V _{DD} to 90% RF			10	μs
RF Path Switching Time (One on Path to Another)	t _{sw}	Switching CMD 50% SCL to 90%/10% RF		0.5	2.2	μs
Wake Up Time	t _{wĸ}	End of low power state 50% SCL to 90% RF			10	μs
VIO Reset Time	t _{RST}	V_{IO} off to it starts to re-power up	10			μs
RF Characteristics	-					
		f ₀ = 0.4GHz to 1.0GHz		0.65	0.90	
		f ₀ = 1.0GHz to 2.0GHz		0.67	1.00	
Insertion Loss (RFINx to RFOUTx)	IL	f ₀ = 2.0GHz to 2.7GHz		0.72	1.10	dB
		f ₀ = 3.0GHz to 3.8GHz		0.78	1.20	
		f ₀ = 4.8GHz to 5.8GHz		1.04	1.60	
		f ₀ = 0.4GHz to 1.0GHz	35	49		
		f ₀ = 1.0GHz to 2.0GHz	30	44		
Isolation (REINx to REOLITx)	ISO	f ₀ = 2.0GHz to 2.7GHz	26	41		dB
olation FINx to RFOUTx)		f ₀ = 3.0GHz to 3.8GHz	20	37		
		f ₀ = 4.8GHz to 5.8GHz	17	31		
		f ₀ = 0.4GHz to 1.0GHz		26		
		f ₀ = 1.0GHz to 2.0GHz		22		
Input Return Loss (RFINx to RFOUTx)	RL	f ₀ = 2.0GHz to 2.7GHz		21		dB
		f ₀ = 3.0GHz to 3.8GHz		18		
		f ₀ = 4.8GHz to 5.8GHz		10		
Input 0.1dB Compression Point		f ₀ = 0.4GHz to 2.7GHz, CW		38		dDus
(RFINx to RFOUTx)	P _{0.1dB}	f ₀ = 3.0GHz to 5.8GHz, CW		36		dBm
2 nd Harmonic	2f ₀			-51		dBm
3 rd Harmonic	3f ₀	f ₀ = 900MHz at 35dBm		-41		dBm
2 nd Harmonic	2f ₀			-63		dBm
3 rd Harmonic	3f ₀	f ₀ = 1900MHz at 33dBm		-59		dBm
2 nd Harmonic	2f ₀			-72		dBm
3 rd Harmonic	3f ₀	f₀ = 950MHz at 25dBm		-65		dBm

MIPI RFFE READ AND WRITE TIMING

Figure 3. Register Read Command Timing Diagram

COMMAND SEQUENCE BIT DEFINITIONS

			Command Frame Bits					Bus	Extended Operation					
Туре	SSC	C[11:8]	C[7]	C[6:5]	C[4]	C[3:0]	Parity Bits	Daula	Data Frame Bits	Parity Bits	Bus Park Cycle	Data Frame Bits	Parity Bits	Bus Park Cycle
Reg Write	Y	SA[3:0]	0	10	A[4]	A[3:0]	Y	-	D[7:0]	Y	Y	-	-	-
Reg Read	Y	SA[3:0]	0	11	A[4]	A[3:0]	Y	Y	D[7:0]	Y	Y	-	-	-
Reg0 Write	Y	SA[3:0]	1	D[6:5]	D[4]	D[3:0]	Y	Y	-	-	-	-	-	-

Legends:

SSC = Sequence Start Command

SA = Slave Address

A = Register Address

D = Data Bit

REGISTER MAPS

Register_0

Register Address: 0x00; R/W

Table 3. Register_0 Register Details

Bits	Bit Name	Description	Default	Туре	B/G	Trig
D[7:0]	MODE_CTRL	See Table 1 section.	00000000	R/W	No	0, 1, 2

Register_1

Register Address: 0x01; R/W

Table 4. Register_1 Register Details

Bits	Bit Name	Description	Default	Туре	B/G	Trig
D[7:0]	MODE_CTRL	See Table 2 section.	00000000	R/W	No	0, 1, 2

RFFE_STATUS

Register Address: 0x1A; R/W

Table 5. RFFE_STATUS Register Details

Bits	Bit Name	Description	Default	Туре	B/G	Trig
D[7]	SOFTWARE_RESET	0: Normal 1: Software reset During software reset, this register and all configurable registers are set to their default values except for reserved registers.	0	R/W	No	No
D[6]	COMMAND_FRAME _PARITY_ERR	Command frame parity error.	0	R/W	No	No
D[5]	COMMAND_LENGTH_ERR	Command length error.	0	R/W	No	No
D[4]	ADDRESS_FRAME _PARITY_ERR	Address frame parity error.	0	R/W	No	No
D[3]	DATA_FRAME _PARITY_ERR	Data frame parity error.	0	R/W	No	No
D[2]	RD_IVD_ADD	Read command to an invalid address.	0	R/W	No	No
D[1]	WR_IVD_ADD	Write command to an invalid address.	0	R/W	No	No
D[0]	BID_GID_ERR	Read command with a BROADCAST_ID or GSID. When this register is read, it will reset.	0	R/W	No	No

GROUP_SID

Register Address: 0x1B; R and R/W

Table 6. GROUP_SID Register Details

Bits	Bit Name	Description	Default	Туре	B/G	Trig
D[7:4]	Reserved	Reserved.	0000	R	No	No
D[3:0]	GSID	Group slave ID.	0000	R/W	No	No

REGISTER MAPS (continued)

PM_TRIG

Register Address: 0x1C; R/W and W

Table 7. PM_TRIG Register Details

Bits	Bit Name	Description	Default	Туре	B/G	Trig
D[7]	PWR_MODE_1	0: Normal 1: Low power	0	R/W	Yes	No
D[6]	PWR_MODE_0	0: Active - Normal 1: Startup - All registers are reset to the default	0	R/W	Yes	No
D[5]	TRIGGER_MASK_2	0: TRIGGER_2 enabled 1: TRIGGER_2 disabled If any one of the three TRIGGER_MASK_x is set to logic '1', the corresponding trigger is disabled, in that case data written to a	0	R/W	No	No
D[4]	TRIGGER_MASK_1	0: TRIGGER_1 enabled 1: TRIGGER_1 disabled 5: TRIGGER_1 disabled 6: Ctherwise, if the TRIGGER_MASK_x is 5: Set to logic '0', incoming data is written to	0	R/W	No	No
D[3]	TRIGGER_MASK_0	D: TRIGGER_0 enabled the shadow register, and the destination register is unchanged until its corresponding trigger is asserted.		R/W	No	No
D[2]	TRIGGER_2	0: Keep its associated destination registers unchanged 1: Load its associated destination registers with the data in the parallel shadow register, provided TRIGGER_MASK_2 is set to logic '0'	0	w	Yes	No
D[1]	TRIGGER_1	0: Keep its associated destination registers unchanged 1: Load its associated destination registers with the data in the parallel shadow register, provided TRIGGER_MASK_1 is set to logic '0'	0	w	Yes	No
D[0]	TRIGGER_0	0: Keep its associated destination registers unchanged 1: Load its associated destination registers with the data in the parallel shadow register, provided TRIGGER_MASK_0 is set to logic '0'	0	w	Yes	No

PRODUCT_ID

Register Address: 0x1D; R

Table 8. PRODUCT_ID Register Details

Bits	Bit Name	Description	Default	Туре	B/G	Trig
D[7:0]	PRODUCT_ID	Product number.	00000100	R	No	No

MANUFACTURER_ID

Register Address: 0x1E; R

Table 9. MANUFACTURER_ID Register Details

Bits	Bit Name	Description	Default	Туре	B/G	Trig
D[7:0]	MANUFACTURER_ID[7:0]	Lower eight bits of Manufacturer ID. Read-only. Note that during USID programming, the write command sequence is executed on the register, but the value does not change.	01001010	R	No	No

MAN_USID

Register Address: 0x1F; R and R/W

Table 10. MAN_USID Register Details

Bits	Bit Name	Description	Default	Туре	B/G	Trig
D[7:4]	MANUFACTURER_ID[11:8]	Jpper four bits of Manufacturer ID. Read-only. Note that during USID programming, the write command sequence is executed on the register, but the value does not change.		R	No	No
D[3:0] USID	חפוס	USID pin connected to GND.	1010	R/W	No	No
	0510	USID pin connected to VIO.	1011		INO	INO

POWER ON AND OFF SEQUENCE

Once the VIO voltage drops to 0V, the VIO waits at least 10μ s before repowering (see Figure 4).

In order to ensure the correct data transmission, SDA/SCL must be sent after VIO has been applied at least 120ns. There must be at least 15µs to apply RF power after VIO has been applied. Wait a minimum of typically 10µs after RFFE bus is idle to apply an RF signal (see Figure 5).

Do not apply RF power during switching. To ensure this, the RF power needs to be removed before the register write operation that changes the switching mode is completed (see Figure 6).

When the low power mode is used, a delay time of $10\mu s$ is required to exit the low power mode (see Figure 7).

Figure 4. Digital Supply Detail

Figure 6. Switch Event Timing

Figure 5. Digital Signal/RF Power-On Detail

Figure 7. Low Power Mode Exit Timing

SGM12033A

TYPICAL APPLICATION CIRCUIT

NOTE: * Matching for optimized RF performance, it may be changed according to different applications.

Figure 8. SGM12033A Typical Application Circuit

EVALUATION BOARD LAYOUT

Figure 9. SGM12033A Evaluation Board Layout

Page

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (MAY 2022) to REV.A

Changed from product preview to production dataAll
--

PACKAGE OUTLINE DIMENSIONS

ULGA-2×2-16AL

SIDE VIEW

RECOMMENDED LAND PATTERN (Unit: mm)

Sympol	Dimensions In Millimeters							
Symbol	MIN	MOD	MAX					
A	0.510	0.550	0.590					
A1		0.170 REF						
A2		0.380 REF						
b	0.150	0.200	0.250					
D	1.950	2.000	2.050					
E	1.950	2.000	2.050					
D1	0.900	1.000	1.100					
E1	0.900 1.000		1.100					
е		0.400 BSC						
L	0.150 0.200 0.250							
k		0.200 TYP						
eee	-	-						

NOTE: This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
ULGA-2×2-16AL	7″	9.5	2.25	2.25	0.75	4.0	4.0	2.0	8.0	Q2

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	00002

