SY8200

High Efficiency Fast Response, 0.6A, 24V Input Synchronous Step Down Regulator *Preliminary Specification*

General Description

 $\begin{array}{l} SY8200 \ develops \ high \ efficiency \ synchronous \ step- \\ down \ DC-DC \ converter \ capable \ of \ delivering \ 0.6A \ . \\ SY8200 \ operates \ over \ a \ wide \ input \ voltage \ range \ from \\ 6V \ to \ 24V \ and \ integrate \ main \ switch \ and \ synchronous \\ switch \ with \ very \ low \ R_{DS(ON)} \ to \ minimize \ the \\ conduction \ loss. \end{array}$

SY8200 adopts the instant PWM architecture to achieve fast transient responses for high step down applications and high efficiency at light loads. In addition, it operates at pseudo-constant frequency of 500 kHz under heavy load conditions to minimize the size of inductor and capacitor.

Ordering Information

Temperature Range: -40°C to 85°C

Ordering Number	Package type	Note
SY8200ABC	SOT23-6	

Features

- Low R_{DS(ON)} for internal switches (top/bottom):420/200 mΩ
- 6-24V input voltage range
- Instant PWM architecture to achieve fast transient responses Internal softstart limits the inrush current
- 2% 0.6V reference
- RoHS Compliant and Halogen Free
- Compact package: SOT23-6 pin

Applications

- Set Top Box
- Portable TV
- Access Point Router
- DSL Modem
- LCD TV

Typical Applications

Pinout (top view)

Top Mark: FLxyz, (Device code: FL, etc.; x=year code, y=week code, z= lot number code)

Pin Name	Pin Number	Pin Description
BS	1	Boot-Strap Pin. Supply high side gate driver. Decouple this pin to LX pin with 0.1uF ceramic cap.
GND	2	Ground pin
FB	3	Output Feedback Pin. Connect this pin to the center point of the output resistor divider (as shown in Figure 1) to program the output voltage: Vout=0.6*(1+R1/R2)
EN	4	Enable control. Pull high to turn on. Do not float.
IN	5	Input pin. Decouple this pin to GND pin with at least 1uF ceramic cap
LX	6	Inductor pin. Connect this pin to the switching node of inductor

Absolute Maximum Ratings (Note 1)

Supply Input Voltage	27V
LX, EN Voltage	V _{IN} + 0.3V
FB, BS-LX Voltage	4V
Power Dissipation, PD @ TA = 25°C SOT23-6,	0.6W
Package Thermal Resistance (Note 2)	
θ ја	200°C/W
θ JC	130°C/W
Junction Temperature Range	150°C
Lead Temperature (Soldering, 10 sec.)	260°C
Storage Temperature Range	65°C to 150°C

Recommended Operating Conditions (Note 3)

Supply Input Voltage	- 6V to 24V
Junction Temperature Range	-40° C to 125°C
Ambient Temperature Range	40°C to 85°C

3

Electrical Characteristics

 $(V_{IN} = 12V, V_{OUT} = 1.2V, L = 2.2uH, C_{OUT} = 10uF, T_A = 25^{\circ}C, I_{OUT} = 0.6A$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range	V _{IN}		6		24	V
Quiescent Current	IQ	$I_{OUT}=0, V_{FB}=V_{REF}\times 105\%$		400		μA
Shutdown Current	I _{SHDN}	EN=0		5	10	μA
Feedback Reference	V		0.588	0.6	0.612	V
Voltage	V _{REF}					
FB Input Current	I _{FB}	$V_{FB} = V_{IN}$	-50		50	nA
Top FET RON	R _{DS(ON)1}			0.42		Ω
Bottom FET RON	R _{DS(ON)2}			0.2		Ω
Bottom FET Valley			0.8			
Current Limit	I _{LIM}		0.8			А
EN Rising Threshold	V _{ENH}		1.5			V
EN Falling Threshold	V _{ENL}				0.4	V
Input UVLO Threshold	V _{UVLO}				4.5	V
UVLO Hysteresis	V _{HYS}			0.4		V
On Time	T _{ON}	$V_{IN} = 12V$, $V_{OUT} = 1.2V$, $I_{OUT} = 0.6A$		200		ns
Min ON Time				50		ns
Min Off Time				100		ns
Thermal Shutdown	т			150		С
Temperature	T _{SD}					
Thermal Shutdown	т			15		С
Hysteresis	T _{HYS}					

Note 1: Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 2: θ JA is measured in the natural convection at TA = 25°C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Pin 2 of SOT-23-6 packages is the case position for θ JC measurement.

Note 3: The device is not guaranteed to function outside its operating conditions.

4

Recommended Pad Layout

Top View

Notes: All dimension in MM All dimension do not include mold flash & metal burr