

SiGe:C Low Noise Amplifier MMIC for GPS, GLONASS, Galileo and Compass Rev. 3 — 18 January 2017 Product data sheet

Product data sheet

Product profile 1.

1.1 General description

The BGU8019 is, also known as the GPS1202M, a Low Noise Amplifier (LNA) for GNSS receiver applications, available in a small plastic 6-pin extremely thin leadless package. The BGU8019 requires one external matching inductor.

The BGU8019 adapts itself to the changing environment resulting from co-habitation of different radio systems in modern cellular handsets. It has been designed for low power consumption and optimal performance when jamming signals from co-existing cellular transmitters are present. At low jamming power levels it delivers 18.5 dB gain at a noise figure of 0.55 dB. During high jamming power levels, resulting for example from a cellular transmit burst, it temporarily increases its bias current to improve sensitivity.

1.2 Features and benefits

- Cover full GNSS L1 band, from 1559 MHz to 1610 MHz
- Noise figure (NF) = 0.55 dB
- Gain = 18.5 dB
- High input 1 dB compression point of -7 dBm
- High out of band IP3_i of 6 dBm
- Supply voltage 1.5 V to 3.1 V
- Self shielding package concept
- Integrated supply decoupling capacitor
- Optimized performance at a supply current of 4.6 mA
- Power-down mode current consumption < 1 μA</p>
- Integrated temperature stabilized bias for easy design
- Require only one input matching inductor
- Input and output DC decoupled
- ESD protection on all pins (HBM > 2 kV)
- Integrated matching for the output
- Available in 6-pins leadless package 1.1 mm × 0.7 mm × 0.37 mm; 0.4 mm pitch: SOT1232
- 180 GHz transit frequency SiGe:C technology
- Moisture sensitivity level of 1

1.3 Applications

LNA for GPS, GLONASS, Galileo and Compass (BeiDou) in smart phones, feature phones, tablet PCs, digital still cameras, digital video cameras, RF front-end modules, complete GNSS modules and personal health applications.

1.4 Quick reference data

Table 1. Quick reference data

 $f = 1575 \text{ MHz}; V_{CC} = 2.85 \text{ V}; V_{I(ENABLE)} \ge 0.8 \text{ V}; P_i < -40 \text{ dBm}; T_{amb} = 25 \text{ °C}; input matched to 50 \Omega using a 6.8 nH inductor, see Figure 1; unless otherwise specified.$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{CC}	supply voltage			1.5	-	3.1	V
I _{CC}	supply current			-	4.6	-	mA
G _p	power gain	no jammer		-	18.5	-	dB
NF	noise figure	P _i = -40 dBm, no jammer	[1]	-	0.55	-	dB
P _{i(1dB)}	input power at 1 dB gain compression			-	-7	-	dBm
IP3 _i	input third-order intercept point		[2]	-	6	-	dBm

[1] PCB losses are subtracted.

[2] $f_1 = 1713$ MHz; $f_2 = 1851$ MHz; Pi = -20 dBm at f_1 ; Pi = -65 dBm at f_2 .

2. Pinning information

Pin	Description	Simplified outline	Graphic symbol
1	GND		
2	V _{CC}	4 3	6 2
3	RF_OUT		5-3
4	GND_RF	5 2	
5	RF_IN		1 4 aaa-006408
6	ENABLE	6	
		Transparent top view	

3. Ordering information

Table 3. Ordering information

Type number Package Name		e				
		Description	Version			
BGU8019	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1.1 \times 0.7 \times 0.37 mm	SOT1232			
OM7848	EVB	BGU8019 evaluation board, MMIC only	-			
OM7849	EVB	BGU8019 evaluation board, front-end EVB	-			

4. Marking

Table 4. Marking codes	
Type number	Marking code
BGU8019	A

5. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Absolute Maximum Ratings are given as Limiting Values of stress conditions during operation, that must not be exceeded under the worst probable conditions.

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage	RF input AC coupled	<u>[1]</u>	-0.5	+5.0	V
V _{I(ENABLE)}	input voltage on pin ENABLE	$V_{I(ENABLE)} < V_{CC} + 0.6 V$	[1][2]	-0.5	+5.0	V
V _{I(RF_IN)}	input voltage on pin RF_IN	DC, $V_{I(RF_IN)} < V_{CC} + 0.6 V$	[1][2][3]	-0.5	+5.0	V
V _{I(RF_OUT)}	input voltage on pin RF_OUT	DC, $V_{I(RF_OUT)} < V_{CC} + 0.6 V$	[1][2][3]	-0.5	+5.0	V
Pi	input power		<u>[1]</u>	-	10	dBm
P _{tot}	total power dissipation	$T_{sp} \le 130 \ ^{\circ}C$		-	55	mW
T _{stg}	storage temperature			-65	+150	°C
Tj	junction temperature			-	150	°C
V _{ESD}	electrostatic discharge voltage	Human Body Model (HBM) According to ANSI/ESDA/JEDEC standard JS-001		-	±2	kV
		Charged Device Model (CDM) According to JEDEC standard JESD22-C101C		-	±1	kV

[1] Stressed with pulses of 200 ms in duration, with application circuit as in Figure 1.

[2] Warning: due to internal ESD diode protection, the applied DC voltage shall not exceed V_{CC} + 0.6 V and shall not exceed 5.0 V in order to avoid excess current.

[3] The RF input and RF output are AC coupled through internal DC blocking capacitors.

6. Recommended operating conditions

Table 6.Operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		1.5	-	3.1	V
T _{amb}	ambient temperature		-40	+25	+85	°C
V _{I(ENABLE)}	input voltage on pin ENABLE	OFF state	-	-	0.3	V
		ON state	0.8	-	-	V

7. Thermal characteristics

Table 7.	Thermal characteristics			
Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-sp)}	thermal resistance from junction to solder point		225	K/W

8. Characteristics

Table 8.Characteristics at V_{CC} = 1.8 V

 $f = 1575 \text{ MHz}; \text{ V}_{CC} = 1.8 \text{ V}; \text{ V}_{I(ENABLE)} \ge 0.8 \text{ V}; P_i < -40 \text{ dBm}; T_{amb} = 25 \text{ °C}; input matched to 50 \Omega using a 6.8 nH inductor, see Figure 1; unless otherwise specified.$

Symbol	Parameter Conditions		Min	Тур	Max	Unit	
I _{CC}	supply current	$V_{I(ENABLE)} \ge 0.8 V$					
		P _i < -40 dBm		-	4.4	-	mA
		$P_i = -20 \text{ dBm}$		-	9	-	mA
		$V_{I(ENABLE)} \le 0.3 V$		-	-	1	μA
G _p	power gain	no jammer		-	18	-	dB
		P _{jam} = −20 dBm; f _{jam} = 850 MHz		-	20	-	dB
		P _{jam} = -20 dBm; f _{jam} = 1850 MHz		-	20	-	dB
RL _{in}	input return loss	P _i < -40 dBm		-	12	-	dB
		$P_i = -20 \text{ dBm}$			20	-	dB
RL _{out}	output return loss	P _i < -40 dBm		-	13	-	dB
		$P_i = -20 \text{ dBm}$		-	12	-	dB
ISL	isolation			-	30	-	dB
NF	noise figure	$P_i = -40 \text{ dBm}$, no jammer	[1]	-	0.55	-	dB
		$P_i = -40 \text{ dBm}$, no jammer	[2]	-	0.60	-	dB
		$P_{jam} = -20 \text{ dBm}; f_{jam} = 850 \text{ MHz}$	[2]	-	0.9	-	dB
		$P_{jam} = -20 \text{ dBm}; f_{jam} = 1850 \text{ MHz}$	[2]	-	1.3	-	dB
P _{i(1dB)}	input power at 1 dB gain compression			-	-10	-	dBm
IP3 _i	input third-order intercept point		<u>[3]</u>	-	2	-	dBm
IMD3	third-order intermodulation distortion	measured at output pin [3]		-	-89	-	dBm
t _{on}	turn-on time	time from V _{I(ENABLE)} ON, to 90 % of the gain			-	2	μS
t _{off}	turn-off time	time from V _{I(ENABLE)} OFF, to 10 % of the gain		-	-	1	μS

[1] PCB losses are subtracted

[2] Including PCB losses

[3] $f_1 = 1713$ MHz; $f_2 = 1851$ MHz; Pi = -20 dBm at f_1 ; Pi = -65 dBm at f_2 .

Table 9. Characteristics at V_{CC} = 2.85 V

 $f = 1575 \text{ MHz}; V_{CC} = 2.85 \text{ V}; V_{I(ENABLE)} \ge 0.8 \text{ V}; P_i < -40 \text{ dBm}; T_{amb} = 25 \text{ }^{\circ}C; \text{ input matched to } 50 \Omega$ using a 6.8 nH inductor, see Figure 1; unless otherwise specified.

Symbol	ymbol Parameter Conditions		I	Min	Тур	Max	Unit
I _{CC}	supply current	$V_{I(ENABLE)} \ge 0.8 V$					
		P _i < -40 dBm		-	4.6	-	mA
		$P_i = -20 \text{ dBm}$		-	10	-	mA
		$V_{I(ENABLE)} \le 0.3 V$		-	-	1	μA
G _p	power gain	no jammer		-	18.5	-	dB
		$P_{jam} = -20 \text{ dBm}; f_{jam} = 850 \text{ MHz}$		-	20.0	-	dB
		$P_{jam} = -20 \text{ dBm}; f_{jam} = 1850 \text{ MHz}$		-	20.5	-	dB
RL _{in}	input return loss	P _i < -40 dBm		-	13	-	dB
		$P_i = -20 \text{ dBm}$			22	-	dB
RL _{out}	output return loss	P _i < -40 dBm		-	13	-	dB
		$P_i = -20 \text{ dBm}$	•	-	12	-	dB
ISL	isolation		•	-	30	-	dB
NF	noise figure	$P_i = -40 \text{ dBm}$, no jammer	<u>[1]</u> .	-	0.55	-	dB
		$P_i = -40 \text{ dBm}$, no jammer	[2]	-	0.60	-	dB
		$P_{jam} = -20 \text{ dBm}; f_{jam} = 850 \text{ MHz}$	[2]	-	0.9	-	dB
		$P_{jam} = -20 \text{ dBm}; f_{jam} = 1850 \text{ MHz}$	<u>[2]</u> .	-	1.3	-	dB
P _{i(1dB)}	input power at 1 dB gain compression			-	-7	-	dBm
IP3 _i	input third-order intercept point		<u>[3]</u> .	-	6	-	dBm
IMD3	third-order intermodulation distortion	measured at output pin [3]		-	-96	-	dBm
t _{on}	turn-on time	time from V _{I(ENABLE)} ON, to 90 % of the gain		-	-	2	μS
t _{off}	turn-off time	time from V _{I(ENABLE)} OFF, to 10 % of the gain		-	-	1	μS

[1] PCB losses are subtracted

[2] Including PCB losses

[3] $f_1 = 1713$ MHz; $f_2 = 1851$ MHz; Pi = -20 dBm at f_1 ; Pi = -65 dBm at f_2 .

9. Application information

9.1 GNSS LNA

Table 10. List of components

For schematics see Figure 1.

Component	Description	Value	Remarks
C1	decoupling capacitor	1 nF	to suppress power supply noise
IC1	BGU8019	-	NXP
L1	high quality matching inductor	6.8 nH	Murata LQW15A

9.2 Graphs

10. Package outline

Fig 31. Package outline SOT1232 (XSON6)

11. Handling information

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

12. Abbreviations

Table 11. Abbreviations				
Acronym	Description			
ESD	ElectroStatic Discharge			
GLONASS	GLObal NAvigation Satellite System			
GNSS	Global Navigation Satellite System			
GPS	Global Positioning System			
НВМ	Human Body Model			
MMIC	Monolithic Microwave Integrated Circuit			
РСВ	Printed Circuit Board			
SiGe:C	Silicon Germanium Carbon			

13. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes			
BGU8019 v.3	20170118	Product data sheet	-	BGU8019 v.2			
Modifications:	<u>Section 1</u> : added GPS1202M according to our new naming convention						
BGU8019 v.2	20140603	Product data sheet	-	BGU8019 v.1			
BGU8019 v.1	20131112	Preliminary data sheet	-	-			

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any

15. Contact information

liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contents

1	Product profile 1
1.1	General description 1
1.2	Features and benefits 1
1.3	Applications 2
1.4	Quick reference data 2
2	Pinning information 2
3	Ordering information 2
4	Marking 3
5	Limiting values 3
6	Recommended operating conditions 3
7	Thermal characteristics 3
8	Characteristics 4
9	Application information 6
9.1	GNSS LNA
9.2	Graphs 6
10	Package outline 14
11	Handling information15
12	Abbreviations 15
13	Revision history 15
14	Legal information 16
14.1	Data sheet status 16
14.2	Definitions 16
14.3	Disclaimers 16
14.4	Trademarks 17
15	Contact information 17
16	Contents 18