GENERAL DESCRIPTION

The LV8548 is a 2-channel low saturation voltage forward/reverse motor driver IC. It is optimal for motor drive in 12V and 24V system products and can drive either two DC motors, one DC motor using parallel connection, or it can drive a stepper motor in Full-step and Half-step.

The output driver block of each H-bridge consists of N-channel power MOSFETs configured as an Hbridge to drive the motor windings. Each H-bridge includes circuitry to regulate or limit the winding current.

Internal shutdown functions are provided for undervoltage lockout, and over temperature. A low-power sleep mode is also provided.

The LV8548 is available in a compact SOIC-10 package.

FEATURES

- DMOS output transistor adoption (upper and lower total Rdson = 0.65 Ω Typ.).
- V_{CC} Max = 28V, I₀ Max = 1.2A, I₀ RMS = 0.8A.
- 4V to 28V operating supply voltage range (The control system power supply is unnecessary.).
- The compact package (SOIC-10) is adopted.
- Current consumption 0 when standby mode.
- It is possible to connect in parallel (parallel connection of drive channel).
- Built-in brake function.

TYPICAL APPLICATIONS

- Refrigerator
- Flatbed Scanner, Document Scanner
- POS Printer, Label Printer
- PoE Point of Sales Terminal
- Clothes Dryer
- Vacuum Cleaner
- Time Recorder

TYPICAL APPLICATION CIRCUIT

PIN CONFIGURATION

Package	Pin Configuration (Top View)	
SOIC-10	V _{CC} 1 IN1 2 IN2 3 IN3 4 IN4 5	C LV8548	10 OUT1 9 OUT2 8 OUT3 7 OUT4 6 GND

PIN DESCRIPTION

No.	Pin	Description	
1	Vcc	Power-supply voltage pin. A 10-uF (minimum) ceramic bypass capacitor to GND is recommended.	
2	IN1	Logic input pin of OUT1 and OUT2. Internal pull-down.	
3	IN2	Logic input pin of OUT1 and OUT2. Internal pull-down.	
4	IN3	Logic input pin of OUT3 and OUT4. Internal pull-down.	
5	IN4	Logic input pin of OUT3 and OUT4. Internal pull-down.	
6	GND	Device ground.	
7	OUT4	Driving output pin. Motor coil is connected between terminal OUT3 (pin8).	
8	OUT3	Driving output pin. Motor coil is connected between terminal OUT4 (pin7).	
9	OUT2	Driving output pin. Motor coil is connected between terminal OUT1 (pin10).	
10	OUT1	Driving output pin. Motor coil is connected between terminal OUT2 (pin9).	

ORDERING INFORMATION

Industrial Range: -40°C to +125°C

Order Part No.	Package	QTY	
LV8548CC-13GTR	SOIC-10, Pb-Free	4000/Reel	
LV8548CC-GT	SOIC-10, Pb-Free	100/Tube	

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Definition	Min.	Max.	Units	
V_{CC} Max	Maximum power supply voltage	Maximum power supply voltage (V _{CC})			
Vout	Output voltage (OUT1, OUT2, OUT	3, OUT4)	-0.3	+30	V
VIN	Input voltage (IN1, IN2, IN3, I	-0.3	+6		
Ignd	Maximum GND pin sink/source c		+1.2	Α	
PD	Package power dissipation @ $T_A \leq$ SOIC-10 +25°C			1.0	W
Rth _{JA}	Thermal resistance, junction to ambient		80	°C/W	
TJ	Junction temperature		150		
Ts	Storage temperature	-55	150	°C	
ΤL	Lead temperature (soldering, 10 s	econds)		300]

Note:

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

RECOMMENDED OPERATION CONDITIONS

Symbol	Definition	Min.	Max.	Units
Vcc	Power supply voltage (V _{CC})	4.0	28	
Vін	Logic "1" input voltage (IN1, IN2, IN3, IN4)	1.8	5.5	
VIL	Logic "0" input voltage (IN1, IN2, IN3, IN4)	-0.3	+0.7	
V _{LO}	Low-side output voltage	0	Vcc	
TA	Ambient temperature	- 40	125	°C

Note:

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_s offset rating is tested with all supplies biased at a 15 V differential.

DYNAMIC ELECTRICAL CHARACTERISTICS

 V_{CC} = 12 V and T_A = 25°C unless otherwise specified.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{on}	Turn-on propagation delay	V _{CC} = 12 / 24 V	170	200	230	
t _{off}	Turn-off propagation delay	V _{CC} = 12 / 24 V	80	100	120	
tr	Turn-on rise time	V _{CC} = 12 / 24 V, 16Ω to GND, 10% to 90% V _{CC}	160	200	240	ns
tr	Turn-off fall time	V _{CC} = 12 / 24 V, 16Ω to GND, 90% to 10% V _{CC}	220	260	300	
DT	Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off	V _{CC} = 12 / 24 V	220	270	320	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Vcc	Power supply voltage		4.0		28	V
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold		3.5	3.7	3.95	
Vccuv-	V _{CC} supply undervoltage negative going threshold	V _{CC} = 12 / 24 V	3.1	3.3	3.6	V
VIH	Logic "1" input voltage		1.8			V
VIL	Logic "0" input voltage				0.7	
I _{CC0}	Quiescent current (standby mode)	V _{CC} = 12 / 24 V, IN1=IN2=IN3=IN4="0"			1	μA
Icc1	Operating current (no load)	V _{CC} = 12 / 24 V, IN1+IN2+IN3+IN4="1"		1.5	2.3	mA
lin	Input current	V _{CC} = 12 / 24 V, V _{IN1/IN2/IN3/IN4} = 5V	40	56	65	μA
T _{SD}	Thermal shutdown temperature		150	160	170	°C
T _{SD_HYS}	Thermal shutdown hysteresis			25		°C
R _{DSON}	Output ON resistance (high-side and low-side total)	I _{OUT} = 0.8A	550	650	900	mΩ
Ioleak	Output leakage current	V ₀ = 30V			10	μA
VD	Diode forward voltage	I _D = 0.8A		1.0	1.2	V

 V_{CC} = 12 V and T_A = 25°C unless otherwise specified.

APPLICATION INFORMATION

DCM Output Control Logic

	Output				Output			put O			Input		
ernarks	Remarks		OUT3	OUT2	OUT1	IN4	IN3	IN2	IN1				
tand-by	Stand-by		OFF	OFF	OFF	L	L	L	L				
Stand-by				OFF	OFF			L	L				
Forward	1СН			L	н			L	Н				
Reverse				Н	L			Н	L				
Brake				L	L			н	Н				
Stand-by		OFF	OFF			L	L						
Forward	2011	L	Н			L	Н						
Reverse	2CH	Н	L			Н	L						
Brake	Г	L	L			н	н						

Timing

About the switch time from the stand-by state to the state of operation, when IN1, IN2, IN3, IN4 are logic "0", the LV8548 has completely stopped operating. After the time of reset of about 7 μ s of and internal setting, it shifts to a prescribed output status corresponding to the state of the input when the signal enters the input terminal.

Reset of about 7µs doesn't hang even if the motor is driven from the stand-by state when either CH drives and the output becomes an output status corresponding to the state of the input. As for full power TR between the reset time, turning off is maintained.

Current Waveforms

Thermal Shutdown

The thermal shutdown circuit is incorporated and the output is turned off when junction temperature exceeds 160°C. As the temperature falls by hysteresis, the output turned on again.

The thermal shutdown circuit doesn't guarantee the protection of the final product because it operates when the temperature exceed the junction temperature of T_{jmax} =150°C.

 $T_{SD} = 160^{\circ}C (TYP)$

T_{SD_HYS} = 25°C (TYP)

CLASSIFICATION REFLOW PROFILES

Profile Feature	Pb-Free Assembly
Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts)	150°C 200°C 60-120 seconds
Average ramp-up rate (Tsmax to Tp) Liquidous temperature (TL) Time at liquidous (tL)	3°C/second max. 217°C 60-150 seconds
Peak package body temperature (Tp)* Time (tp)** within 5°C of the specified classification temperature (Tc)	Max 260°C Max 30 seconds
Average ramp-down rate (Tp to Tsmax) Time 25°C to peak temperature	6°C/second max. 8 minutes max.

Figure 2 Classification Profile

PACKAGE CASE OUTLINES

- NOTES: 1. DMENSIONING AND TOLERANCING PER AGME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DMENSION. DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10mm TOTAL IN EXCESS OF 'b' AT MAXIMUM MAT ERIAL CONDITION. 4. DMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEEDD.16mm PER SIDE. DIMENSIONS D AND E ARE DE-TERMINED AT DATUMF. 5. DMENSIONS A.AND B ARE TO BE DETERM-INED AT DATUM F. 6. AI IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

	MILLIMETERS					
DIM	MIN	MAX				
A	1.25	1.75				
A1	0.10	0.25				
A3	0.17	0.25				
Ь	0.31	0.51				
D	4.80	5.00				
E	3.80	4.00				
e	1.00	BSC				
Н	5.80	6.20				
h	0.37	' REF				
L	0.40	1.27				
12	0.25 BSC					
M	D°	8°				

RECOMMENDED SOLDERING FOOTPRINT

