

SGM2051 1.2A, Ultra-High PSRR, Fast Load Transient, Bias Rail CMOS Voltage Regulator

GENERAL DESCRIPTION

The SGM2051 is an ultra-high PSRR, fast transient response, low noise and low dropout voltage linear regulator which is designed using CMOS technology. It provides 1.2A output current capability. The operating input voltage range is from 0.5V to 5.5V and bias supply voltage range is from 2.5V to 5.5V. The adjustable output voltage range is from 0.5V to 3.3V.

Other features include logic-controlled shutdown mode, short-circuit current limit and thermal shutdown protection. The SGM2051 has automatic discharge function to quickly discharge V_{OUT} in the disabled status.

The SGM2051 is available in a Green WLCSP- 0.8×1.2 -6B-A package. It operates over an operating temperature range of -40°C to +125°C.

FEATURES

- Input Supply Voltage Range: 0.5V to 5.5V
- Bias Supply Voltage Range: 2.5V to 5.5V
- Adjustable Output Voltage Range: 0.5V to 3.3V
- Output Voltage Accuracy: ±0.8% at +25°C
- High PSRR: 70dB (TYP) at 1kHz
- Low Dropout Voltage: 60mV (TYP) at 1.2A
- Low Bias Input Current: 96µA (TYP)
- Very Low Bias Input Current in Shutdown: < 1µA
- Low Noise: 29µV_{RMS} (TYP)
- Fast Load Transient Response
- Output Current Limit
- Stable with Small Case Size Ceramic Capacitors
- Thermal Shutdown Protection
- Logic Level Enable Input for ON/OFF Control
- -40°C to +125°C Operating Temperature Range
- Available in a Green WLCSP-0.8×1.2-6B-A Package

APPLICATIONS

Portable Equipment Smartphone Industrial and medical Equipment

TYPICAL APPLICATION

Fixed Voltage Typical Application Circuit

Adjustable Voltage Typical Application Circuit

1.2A, Ultra-High PSRR, Fast Load Transient, Bias Rail CMOS Voltage Regulator

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM2051-0.75	WLCSP-0.8×1.2-6B-A	-40°C to +125°C	SGM2051-0.75XG	XXX CZ5	Tape and Reel, 3000
SGM2051-0.8	WLCSP-0.8×1.2-6B-A	-40°C to +125°C	SGM2051-0.8XG	XXX CZ6	Tape and Reel, 3000
SGM2051-0.85	WLCSP-0.8×1.2-6B-A	-40°C to +125°C	SGM2051-0.85XG	XXX CZ7	Tape and Reel, 3000
SGM2051-1.0	WLCSP-0.8×1.2-6B-A	-40°C to +125°C	SGM2051-1.0XG	XXX CZ8	Tape and Reel, 3000
SGM2051-1.05	WLCSP-0.8×1.2-6B-A	-40°C to +125°C	SGM2051-1.05XG	XXX CZ9	Tape and Reel, 3000
SGM2051-1.1	WLCSP-0.8×1.2-6B-A	-40°C to +125°C	SGM2051-1.1XG	XXX CZB	Tape and Reel, 3000
SGM2051-1.15	WLCSP-0.8×1.2-6B-A	-40°C to +125°C	SGM2051-1.15XG	XXX ORD	Tape and Reel, 3000
SGM2051-1.2	WLCSP-0.8×1.2-6B-A	-40°C to +125°C	SGM2051-1.2XG	XXX CZC	Tape and Reel, 3000
SGM2051-1.8	WLCSP-0.8×1.2-6B-A	-40°C to +125°C	SGM2051-1.8XG	XXX CZD	Tape and Reel, 3000
SGM2051-2.8	WLCSP-0.8×1.2-6B-A	-40°C to +125°C	SGM2051-2.8XG	XXX CZE	Tape and Reel, 3000
SGM2051-3.0	WLCSP-0.8×1.2-6B-A	-40°C to +125°C	SGM2051-3.0XG	XXX CZF	Tape and Reel, 3000
SGM2051-3.3	WLCSP-0.8×1.2-6B-A	-40°C to +125°C	SGM2051-3.3XG	XXX R00	Tape and Reel, 3000
SGM2051-ADJ	WLCSP-0.8×1.2-6B-A	-40°C to +125°C	SGM2051-ADJXG	XXX R01	Tape and Reel, 3000

MARKING INFORMATION

NOTE: X = Date Code. XX = Trace Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

IN, BIAS, EN to GND	0.3V to 6V					
OUT, SNS, ADJ to GND0.3V to $Min(V_{IN} + 0.3V, 6V)$						
Package Thermal Resistance						
WLCSP-0.8×1.2-6Β-Α, θ _{JA}	177°C/W					
WLCSP-0.8×1.2-6B-A, θ _{JB}	32°C/W					
WLCSP-0.8×1.2-6B-A, θ _{JC}	48°C/W					
Junction Temperature	+150°C					
Storage Temperature Range65	°C to +150°C					
Lead Temperature (Soldering, 10s)	+260°C					
ESD Susceptibility						
HBM	5000V					
CDM	1000V					

RECOMMENDED OPERATING CONDITIONS

Input Supply Voltage Range, VIN	0.5V to 5.5V
Bias Supply Voltage Range, VBIAS	2.5V to 5.5V
Bias Effective Capacitance, CBIAS	1µF (MIN)
Input Effective Capacitance, CIN	2.2µF (MIN)
Output Effective Capacitance, COUT	4.7µF to 22µF
Operating Junction Temperature Range	40°C to +125°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	FUNCTION		
A1	VOUT	Regulator Output Pin. It is recommended to use an output capacitor with effective capacitance in the range of 4.7μ F to 22μ F.		
A2	VIN	Input Voltage Supply Pin.		
SNS Output Voltage Sense Input Pin (fixed voltage version only). Connect this pin to the the output trace only in the fixed voltage version.				
ы	ADJ	Feedback Input Pin (adjustable voltage version only). Connect this pin to the external resistor divider to adjust the output voltage. Place the resistors as close as possible to this pin.		
B2	EN	Enable Pin. Drive EN high to turn on the regulator. Drive EN low to turn off the regulator. The EN pin has an internal 0.26µA pull-down current source which ensures that the device is turned off when the EN pin is floated.		
C1	GND	Ground.		
C2	BIAS	Bias Supply Voltage Pin for Internal Control Circuits. This pin is monitored by internal under-voltage lockout circuit.		

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{OUT(NOM)} + 0.3V, V_{BIAS} = 2.5V \text{ or } (V_{OUT(NOM)} + 1.6V)$ (whichever is greater), $V_{EN} = 1V$, $I_{OUT} = 1mA$, $C_{IN} = C_{OUT} = 10\mu F$ and $C_{BIAS} = 2.2\mu F$, $T_J = -40^{\circ}C$ to $+125^{\circ}C$, typical values are at $T_J = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS			
Input Supply Voltage Range	V _{IN}		V _{OUT(NOM)} + V _{DROP_VIN}		5.5	V			
Bias Supply Voltage Range	V _{BIAS}		(V _{OUT(NOM)} + 1.6) ≥ 2.5		5.5	V			
I la den Meltene I esteret		V _{BIAS} rising		1.65	2	V			
Under-Voltage Lockout	V _{UVLO}	Hysteresis		0.3		V			
Foodbook Voltago	V _{FB}	SGM2051-ADJ, T _J = +25°C	0.496	0.5	0.504	v			
Feedback Voltage	VFB	SGM2051-ADJ	0.492		0.508				
Output Voltage Accuracy	V _{OUT}	$ \begin{array}{l} V_{IN} = (V_{OUT(NOM)} + 0.3V) \mbox{ to } \\ 5.5V, \ V_{BIAS} = 2.5V \mbox{ or } \\ (V_{OUT(NOM)} + 1.6V) \mbox{ to } 5.5V, \\ I_{OUT} = 1mA \mbox{ to } 1.2A \end{array} \begin{array}{l} T_{\rm J} = +25^{\circ}C \\ T_{\rm J} = -40^{\circ}C \mbox{ to } +125^{\circ}C \end{array} $	-0.8 -1.6		0.8 1.6	%			
	ΔVout	$V_{IN} = (V_{OUT(NOM)} + 0.3V)$ to 5.5V, 0.5V $\leq V_{OUT(NOM)} \leq 1.8V$		0.001	0.03				
V _{IN} Line Regulation	$\overline{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$	$V_{IN} = (V_{OUT(NOM)} + 0.3V)$ to 5.5V, 1.8V < $V_{OUT(NOM)} \le 3.3V$		0.004	0.05	%/V			
V _{BIAS} Line Regulation		$V_{BIAS} = 2.5V \text{ or } (V_{OUT(NOM)} + 1.6V) \text{ to } 5.5V,$ $0.5V \le V_{OUT(NOM)} \le 1.8V$		0.02	0.1				
	$\Delta V \text{bias} \times V \text{out}$	V _{BIAS} = (V _{OUT(NOM)} + 1.6V) to 5.5V, 1.8V < V _{OUT(NOM)} ≤ 3.3V		0.07	0.28				
Load Regulation				1	6	mV			
V _{IN} Dropout Voltage ⁽¹⁾ V _{DROP_VIN} I _{OUT} = 1.2A			60	104	mV				
V _{BIAS} Dropout Voltage ^{(2) (3)} V _{DROP_BIAS} I _{OUT} = 1.2A, V _{IN} = V _{BIAS}			1.1	1.4	V				
Output Current Limit	I _{LIMIT}	$V_{OUT} = 90\% \times V_{OUT(NOM)}$		2.2		Α			
Short Current Limit I _{SHORT}		V _{OUT} = 0V		1.1		А			
ADJ Pin Operating Current I _{ADJ}			-10		10	nA			
BIAS Pin Quiescent Current		V _{BIAS} = 5.5V		96	135	μA			
VIN Pin Quiescent Current	I _{IN}	$V_{IN} = 5.5V, I_{OUT} = 0mA$		35	100	μA			
BIAS Pin Shutdown Current	I _{BIAS(DIS)}	V _{EN} = 0V			1	μA			
VIN Pin Shutdown Current	I _{VIN(DIS)}	V _{EN} = 0V, T _J = +25°C			0.5	μA			
		V _{EN} = 0V			8	μΑ			
EN Input Voltage	V _{IH}	Logic high	1			V			
EN Input Voltage	VIL	Logic low, T_J = +25°C			0.4	V			
EN Pull-Down Current	I _{EN}	V _{EN} = 5.5V, V _{BIAS} = 5.5V		0.26	1	μA			
Turn-On Time t _{on}		$V_{\text{OUT(NOM)}}$ = 1.1V, from assertion of V_{EN} to V_{OUT} = 98% × $V_{\text{OUT(NOM)}}$		150		μs			
V _{IN} Power Supply Rejection Ratio	PSRR	V_{IN} to V_{OUT} , f = 1kHz, $V_{OUT(NOM)}$ = 1.1V, I_{OUT} = 150mA, $V_{IN} \ge 1.6V$		70		dB			
V _{BIAS} Power Supply Rejection Ratio		V_{BIAS} to V_{OUT} , f = 1kHz, $V_{\text{OUT}(\text{NOM})}$ = 1.1V, I_{OUT} = 150mA, $V_{\text{IN}} \ge 1.6V$		80		dB			
Output Voltage Noise en		$V_{OUT(NOM)}$ = 1.1V, V_{IN} = 1.6V, f = 10Hz to 100kHz		29		μV_{RMS}			
Output Discharge Resistance	R _{DIS}	V _{EN} = 0V, V _{OUT} = 0.5V	50	80	120	Ω			
Thermal Shutdown Temperature	T _{SHDN}			160		°C			
Thermal Shutdown Hysteresis	ΔT_{SHDN}			20		°C			

NOTES:

1. V_{IN} dropout voltage is defined as the difference between V_{IN} and V_{OUT} when V_{OUT} falls to 95% × $V_{OUT(NOM)}$.

2. V_{BIAS} dropout voltage refers to V_{BIAS} - V_{OUT} when the VIN and BIAS pins are connected together and V_{OUT} falls to 95% × $V_{OUT(NOM)}$.

3. For output voltages lower than 1.6V, V_{BIAS} dropout voltage is not applicable because the minimum bias supply voltage is 2.5V.

TYPICAL PERFORMANCE CHARACTERISTICS

 $T_{J} = +25^{\circ}C, V_{IN} = 1.4V, V_{EN} = V_{BIAS} = 2.7V, V_{OUT(NOM)} = 1.1V, C_{IN} = C_{OUT} = 10\mu F, C_{BIAS} = 2.2\mu F, unless otherwise noted.$

SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $T_{J} = +25^{\circ}C, V_{IN} = 1.4V, V_{EN} = V_{BIAS} = 2.7V, V_{OUT(NOM)} = 1.1V, C_{IN} = C_{OUT} = 10\mu F, C_{BIAS} = 2.2\mu F, unless otherwise noted.$

SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $T_{J} = +25^{\circ}C, V_{IN} = 1.4V, V_{EN} = V_{BIAS} = 2.7V, V_{OUT(NOM)} = 1.1V, C_{IN} = C_{OUT} = 10\mu F, C_{BIAS} = 2.2\mu F, unless otherwise noted.$

FUNCTIONAL BLOCK DIAGRAMS

Figure 2. Fixed Output Voltage Internal Block Diagram

Figure 3. Adjustable Output Voltage Internal Block Diagram

APPLICATION INFORMATION

The SGM2051 is a low noise, fast transient response high performance LDO, it consumes only $96\mu A$ (TYP) quiescent current and provides 1.2A output current. The SGM2051 provides the protection function for output overload, output short-circuit condition and overheating.

The SGM2051 is suitable for application which has noise sensitive circuit such as battery-powered equipment and smartphones.

Input Capacitor Selection (CIN)

The input decoupling capacitor is necessary to be connected as close as possible to the VIN pin for ensuring the device stability. 2.2μ F or greater X7R or X5R ceramic capacitor is selected to get good dynamic performance.

When V_{IN} is required to provide large current instantaneously, a large effective input capacitor is required. Multiple input capacitors can limit the input tracking inductance. Adding more input capacitors is available to restrict the ringing and to keep it below the device absolute maximum ratings.

Output Capacitor Selection (COUT)

The output decoupling capacitor should be located as close as possible to the VOUT pin. A 4.7 μ F or greater X7R or X5R ceramic capacitor is selected to get good dynamic performance. The minimum effective capacitance of C_{OUT} that SGM2051 can remain stable is 4.7 μ F. For ceramic capacitor, temperature, DC bias and package size will change the effective capacitance, so enough margin of C_{OUT} must be considered in design. Larger capacitance and lower ESR C_{OUT} will help improve the load transient response and increase the high frequency PSRR.

Enable Operation

The SGM2051 uses the EN pin to enable/disable the device and to deactivate/activate the output automatic discharge function.

When the EN pin voltage is lower than 0.4V, the device is in shutdown state, there is no current flowing from VIN to VOUT pins. In this state, the automatic discharge transistor is active to discharge the output voltage through an 80Ω (TYP) resistor.

When the EN pin voltage is higher than 1V, the device is in active state, the input voltage is regulated to the output voltage and the automatic discharge transistor is turned off.

The EN pin is pulled down by internal $0.26\mu A$ (TYP) current source when the EN pin is floated. This current source will ensure the SGM2051 in shutdown state and reduce the power dissipation in system.

Adjustable Regulator

The output voltage of the SGM2051 can be adjusted from 0.5V to 3.3V. The ADJ pin will be connected with two external resistors as shown in Figure 4, the output voltage is determined by the following equation:

$$V_{OUT} = V_{FB} \times \left(1 + \frac{R_1}{R_2}\right)$$
(1)

where:

 V_{OUT} is output voltage and V_{FB} is the internal voltage reference, V_{FB} = 0.5V.

One parallel capacitor (C_{FF}) with R₁ can be used to improve the feedback loop stability and PSRR, increase the transient response and reduce the output noise. Use R₂ \leq 10k Ω with C_{FF} in the range of 1nF to 100nF (effective capacitance), or choose R₂ \leq 1.5k Ω and the value of C_{FF} is unlimited.

Figure 4. Adjustable Output Voltage Application

APPLICATION INFORMATION (continued)

Dropout Voltage

The SGM2051 specifies two dropout voltages because there are two power supplies V_{IN} and V_{BIAS} and one V_{OUT} regulator output. V_{IN} dropout voltage is defined as the difference between V_{IN} and V_{OUT} when V_{OUT} falls 5% below V_{OUT(NOM)}. When the output voltage is lower than 1.6V, V_{BIAS} dropout voltage is not applicable because the minimum bias supply voltage is 2.5V.

When V_{OUT} begins to decrease and V_{BIAS} is high enough, the V_{IN} dropout voltage equals to V_{IN} - V_{OUT} . V_{BIAS} dropout voltage refers to V_{BIAS} - V_{OUT} when the VIN and BIAS pins are connected together and V_{OUT} begins to decrease.

Output Current Limit and Short-Circuit Protection

When overload events happen, the output current is internally limited to 2.2A (TYP). When the VOUT pin is shorted to ground, the short-circuit protection will limit the output current to 1.1A (TYP).

Thermal Shutdown Protection

The SGM2051 can detect the temperature of die. When the die temperature exceeds the threshold value of thermal shutdown, the SGM2051 will be in shutdown state and it will remain in this state until the die temperature decreases to +140°C.

Power Dissipation (P_D)

Thermal protection limits power dissipation in the SGM2051. When power dissipation on pass element ($P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$) is too much that raise the operation junction temperature exceeds +160°C, the

OTP circuit starts the thermal shutdown function and turns the pass element off. The power dissipation needs to be less than 6W when thermal protection occurs.

Therefore, thermal analysis for the chosen application is important to guarantee reliable performance over all conditions. To guarantee reliable operation, the junction temperature of the SGM2051 must not exceed 125°C.

In order to calculate the maximum power that the device can dissipate, the following formula is used:

$$P_{D(MAX)} = (125^{\circ}C - T_{A}) / \theta_{JA}$$
(2)

where T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

Negatively Biased Output

When the output is negative voltage, the chip may not start-up due to parasitic effects. Ensure that the output is greater than -0.3V under all conditions. The load is too high can make $V_{OUT} < -0.3V$, a Schottky diode can be added between the VOUT pin and GND pin.

Reverse Current Protection

The NMOS power transistor has an inherent body diode, this body diode will be forward biased when $V_{OUT} > V_{IN}$. When $V_{OUT} > V_{IN}$, the reverse current flowing from the VOUT pin to the VIN pin will damage the SGM2051. If $V_{OUT} > (V_{IN} + 0.3V)$ is expected in the application, one external Schottky diode will be added between the VOUT pin and VIN pin to protect the SGM2051.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (JANUARY 2022) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS WLCSP-0.8×1.2-6B-A

NOTE: All linear dimensions are in millimeters.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
WLCSP-0.8×1.2-6B-A	7″	9.0	0.90	1.32	0.68	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	DD0002

