TPS22908 SLVSBI7A - JULY 2012 - REVISED AUGUST 2012

Ultra Small, Low-Input Voltage, Low R_{ON} Load Switch

Check for Samples: TPS22908

FEATURES

- Low Input Voltage: 1.0 V to 3.6 V
- Ultra-Low ON-State Resistance (RoN)
 - $R_{ON} = 28 \text{ m}\Omega \text{ at VIN} = 3.6 \text{ V}$
 - R_{ON} = 33 mΩ at VIN = 2.5 V
 - R_{ON} = 42 m Ω at VIN = 1.8 V
 - $-R_{ON} = 70 \text{ m}\Omega \text{ at VIN} = 1.2 \text{ V}$
- **1-A Maximum Continuous Switch Current**
- Quiescent Current <1 µA
- Shutdown Current <1 µA
- Low Control Input Thresholds Enable Use of Low-Voltage Logic
- **Controlled Slew Rate to Avoid Inrush Currents**
- Ultra Small CSP-4 Package 0.9 mm x 0.9 mm, 0.5-mm Pitch, 0.5-mm Height
- Quick Output Discharge (QOD)

APPLICATIONS

- **Battery Powered Equipment** •
- **Portable Industrial Equipment**
- **Portable Medical Equipment**
- **Portable Media Players**
- **Point of Sales Terminal**
- **GPS** Devices
- **Digital Cameras**
- Portable Instrumentation
- **Smartphones / Tablets**

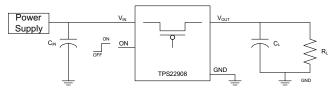


Figure 1. Typical Application

DESCRIPTION

The TPS22908 is an ultra small, low R_{ON} load switch with controlled turn on. The device contains a P-channel MOSFET that operates over an input voltage range of 1.0 V to 3.6 V. The switch is controlled by an on/off input (ON), which is capable of interfacing directly with low-voltage control signals.

The TPS22908 is available in a space-saving 4-terminal WCSP with 0.5-mm pitch (YZT). The device is characterized for operation over the free-air temperature range of -40°C to 85°C.

FEATURE LIST												
DEVICE	R _{ON} (typical) AT 3.6 V	RISE TIME (typical) AT 3.6 V	QUICK OUTPUT DISCHARGE ⁽¹⁾	MAXIMUM CURRENT	ENABLE							
TPS22908	28 mΩ	105 µs	Yes	1000 mA	Active high							

(1) This feature discharges the output of the switch to ground through an $80-\Omega$ resistor, preventing the output from floating.

ORDERING INFORMATION

T _A	P	ACKAGE	ORDERABLE PART NUMBER	TOP MARKING
40%C to 95%C	4 V7T	Reel of 250	TPS22908YZTT	۸T
–40°C to 85°C	4-YZT	Tape of 3000	TPS22908YZTR	AT

TPS22908

SLVSBI7A-JULY 2012-REVISED AUGUST 2012

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			VALUE	UNIT ⁽²⁾		
V _{IN}	Supply voltage range		–0.3 to 4	V		
V _{OUT}	Output voltage range		–0.3 to (V _{IN} + 0.3)	V		
V _{ON}	Input voltage range	-0.3 to 4	V			
	Maximum Continuous Swite	1000	~ ^			
I _{MAX}	Maximum Continuous Swite	600	mA			
T _A	Operating free-air temperat	ure range ⁽³⁾	-40 to 85	°C		
TJ	Maximum junction tempera	ure	125	°C		
T _{STG}	Storage temperature range		-65 to 150	°C		
T _{LEAD}	Maximum lead temperature	(10-s soldering time)	300	°C		
ESD	Electrostatic discharge Human-Body Model (HBM)		2000	- V		
E3D	protection	Charged-Device Model (CDM)	1000	V		

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature [T_{J(max)}], the maximum power dissipation of the device in the application [P_{D(max)}], and the junction-to-ambient thermal resistance of the part/package in the application (θ_{JA}), as given by the following equation: T_{A(max)} = T_{J(max)} - (θ_{JA} × P_{D(max)})

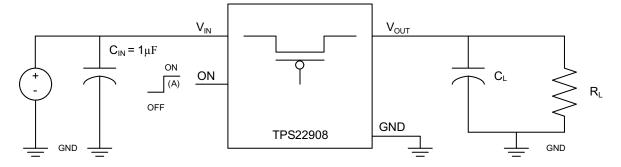
THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾⁽²⁾	TPS22908	
		YZT (4 PINS)	UNITS
Θ_{JA}	Junction-to-ambient thermal resistance	188	
Θ _{JC(top)}	Junction-to-case(top) thermal resistance	2	
Θ_{JB}	Junction-to-board thermal resistance	33	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	9.1	0.00
Ψ_{JB}	Junction-to-board characterization parameter	33	
$\Theta_{JC(bottom)}$	Junction-to-case(bottom) thermal resistance	N/A	

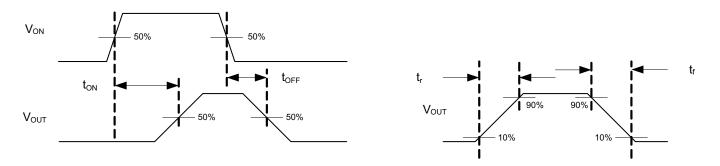
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953
(2) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.

RECOMMENDED OPERATING CONDITIONS

		MIN	MAX	UNIT
V _{IN}	Input voltage range	1.0	3.6	V
V _{ON}	ON voltage range	0	3.6	V
V _{OUT}	Output voltage range	0	V _{IN}	V
V _{IH}	High-level input voltage, ON	0.85	3.6	V
VIL	Low-level input voltage, ON	0	0.4	V
C _{IN}	Input capacitor	1 ⁽¹⁾		μF


(1) Refer to application section.

ELECTRICAL CHARACTERISTICS


Unless otherwise noted the specification applies over the operating ambient temp $-40^{\circ}C \le T_A \le 85^{\circ}C$. Typical values are for $V_{IN} = 3.6V$, and $T_A = 25^{\circ}C$ unless otherwise noted.

	PARAMETER	TEST CON	DITIONS	TA	MIN	TYP M	ΛAX	UNIT	
POWER	SUPPLIES AND CURRENTS								
I _{IN}	Quiescent current	$I_{OUT} = 0, V_{IN} = V_{ON}$		Full	().19	1	μΑ	
I _{IN(OFF)}	OFF-state supply current	$V_{ON} = GND, V_{OUT} = 0$	Open	Full	().12	1	μA	
IIN(LEAK)	OFF-state supply current	$V_{ON} = GND, V_{OUT} = 0$) V	Full	().12	1	μA	
I _{ON}	ON pin input leakage current	V _{ON} = 1.1 V to 3.6 V		Full	(0.01	0.1	μA	
RESISTA	NCE AND SWITCH CHARACTER	RISTICS		· · ·					
				25°C		28.2	32.1	mΩ	
			V _{IN} = 3.6 V	Full		:	34.9		
				25°C		33.1	37.5		
			V _{IN} = 2.5 V	Full			40.6	mΩ	
D		000 0		25°C	4	41.5	50.3		
R _{ON}	ON-state resistance	I _{OUT} = -200 mA	V _{IN} = 1.8 V	Full		:	54.0	mΩ	
				25°C	(69.7	87.3	-	
			V _{IN} = 1.2 V	Full		!	91.2	mΩ	
				25°C		112	155		
			V _{IN} = 1.0 V	Full			156	mΩ	
R _{PD}	Output pulldown resistance	V _{IN} = 3.3V, V _{ON} = GN	ID, I _{OUT} = 30 mA	25°C		80	100	Ω	

SWITCHING CHARACTERISTIC MEASUREMENT INFORMATION

TEST CIRCUIT

t_{ON}/t_{OFF} WAVEFORMS

A. Rise and fall times of the control signal is 100 ns.

Figure 2. Test Circuit and t_{ON}/t_{OFF} Waveforms

SWITCHING CHARACTERISTICS

			Т	8		
PARAMETER		TEST CONDITION	MIN	TYP	MAX	UNIT
V _{IN} = 3	3.6 V, T _A = 25°C (unless otherwise noted)					
t _{ON}	Turn-ON time	R_L =10 Ω, C_L = 0.1 μF		110		
t _{OFF}	Turn-OFF time	$R_L=10 \Omega, C_L = 0.1 \mu F$		5		
t _R	V _{OUT} Rise time	$R_L=10 \Omega, C_L = 0.1 \mu F$		105		μs
t _F	V _{OUT} Fall time	$R_L=10 \ \Omega, \ C_L=0.1 \ \mu F$		2		
V _{IN} = 1	.0 V, T _A = 25°C (unless otherwise noted)					
t _{ON}	Turn-ON time	$R_L=10 \Omega, C_L = 0.1 \mu F$		493		
t _{OFF}	Turn-OFF time	$R_L=10 \Omega, C_L = 0.1 \mu F$		7		
t _R	V _{OUT} Rise time	$R_L=10 \ \Omega, \ C_L=0.1 \ \mu F$		442		μs
t _F	V _{OUT} Fall time	$R_L=10 \ \Omega, \ C_L=0.1 \ \mu F$		2		

FUNCTIONAL BLOCK DIAGRAM and PINOUT DESCRIPTION

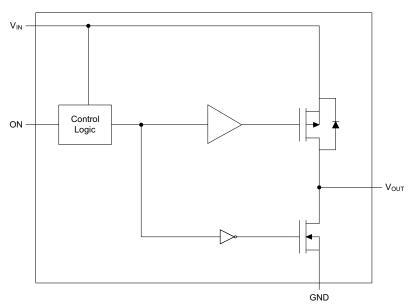
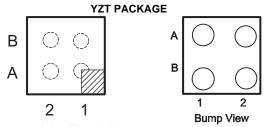
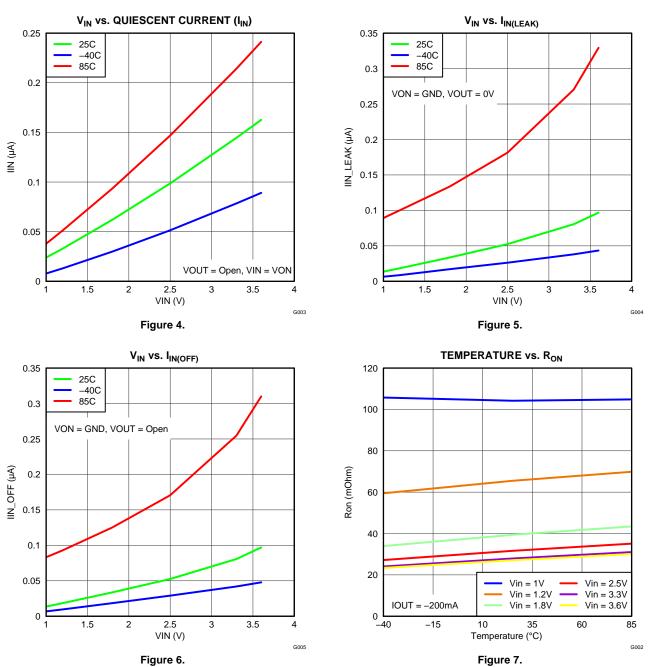



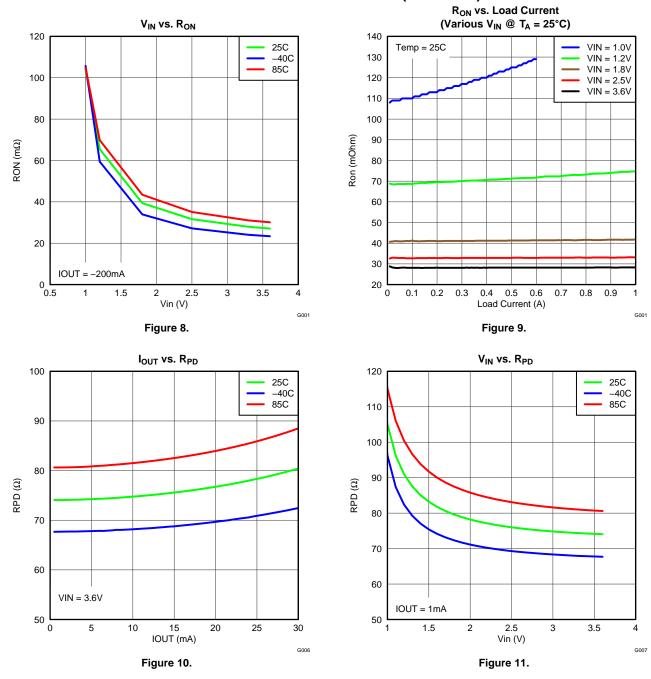
Figure 3. Functional Block Diagram

Laser Marking View

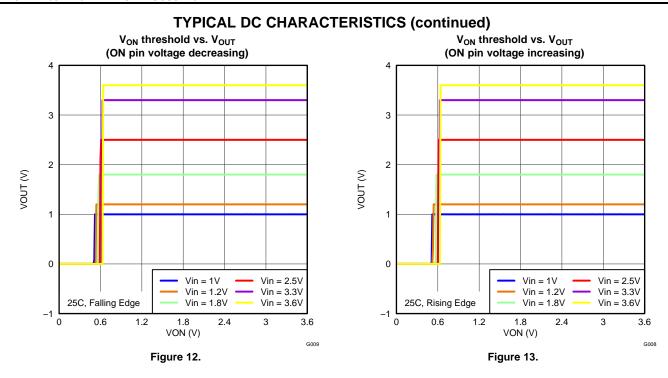

Table 1. FUNCTIONAL TABLE

ON	V _{IN} to V _{OUT}	V _{OUT} to GND
L	Off	On
Н	On	Off

PIN DESCRIPTIONS


TPS22908	PIN NAME	DESCRIPTION						
YZT		DESCRIPTION						
B2	ON	Switch control input, active high. Do not leave floating.						
B1	GND	Ground						
A2	VIN	Switch input, bypass this input with an optional ceramic capacitor to ground. See Application Information.						
A1	Vout	Switch output						

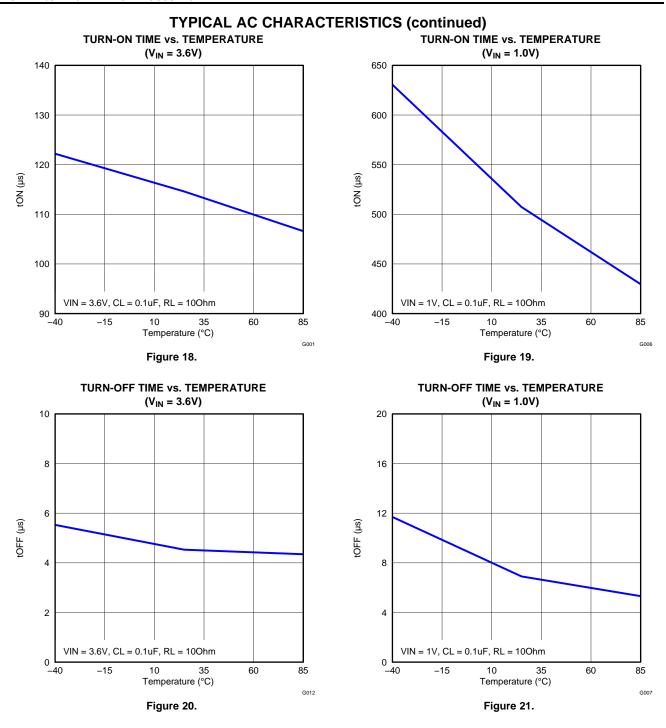
TPS22908 SLVSBI7A – JULY 2012 – REVISED AUGUST 2012

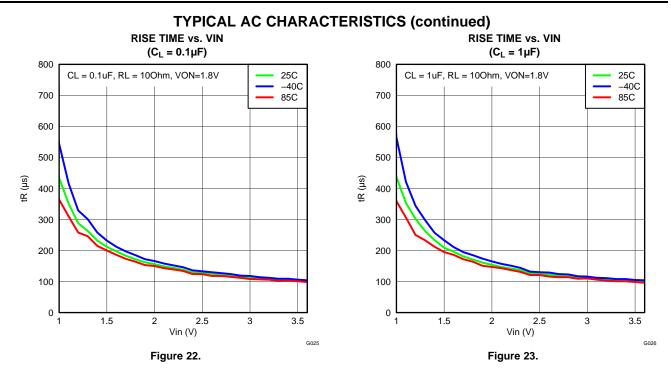

TYPICAL DC CHARACTERISTICS

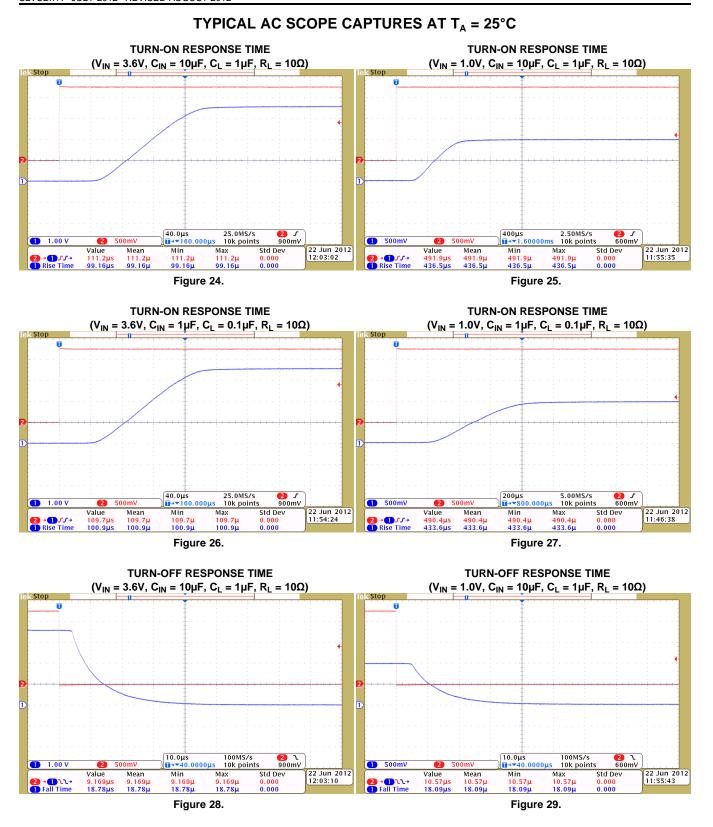
TPS22908 SLVSBI7A – JULY 2012 – REVISED AUGUST 2012

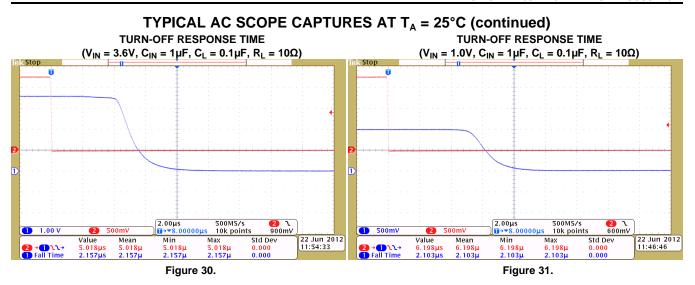
TYPICAL DC CHARACTERISTICS (continued)

TPS22908 SLVSBI7A – JULY 2012 – REVISED AUGUST 2012




TPS22908 SLVSBI7A – JULY 2012 – REVISED AUGUST 2012


TYPICAL AC CHARACTERISTICS


TPS22908 SLVSBI7A – JULY 2012 – REVISED AUGUST 2012

TPS22908 SLVSBI7A-JULY 2012-REVISED AUGUST 2012

APPLICATION INFORMATION

ON/OFF CONTROL

The ON pin controls the state of the switch. Asserting ON high enables the switch. ON is active high and has a low threshold making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic threshold. It can be used with any microcontroller with 1.2-V or higher GPIOs.

INPUT CAPACITOR (OPTIONAL)

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor can be placed between V_{IN} and GND. A 1- μ F ceramic capacitor, C_{IN} , placed close to the pins, is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop during high-current application. When switching heavy loads, it is recommended to have an input capacitor about 10 times higher than the output capacitor to avoid excessive voltage drop.

OUTPUT CAPACITOR (OPTIONAL)

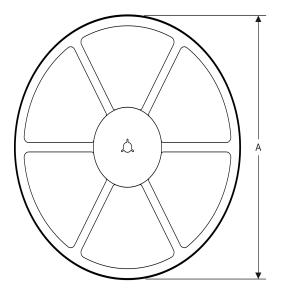
Due to the integrated body diode of the PMOS switch, a C_{IN} greater than C_L is highly recommended. A C_L greater than C_{IN} can cause V_{OUT} to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from V_{OUT} to V_{IN} . A C_{IN} to C_L ratio of at least 10 to 1 is recommended for minimizing V_{IN} dip caused by inrush currents during startup; however, a 10 to 1 ratio for capacitance is not required for proper functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) could cause slightly more V_{IN} dip upon turn due to inrush currents.

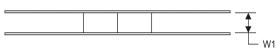
BOARD LAYOUT

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal operation. Using wide traces for V_{IN} , V_{OUT} , and GND helps minimize the parasitic electrical effects along with minimizing the case to ambient thermal impedance.

PACKAGE OPTION ADDENDUM

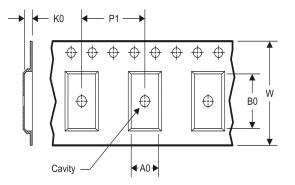
6-Aug-2012


PACKAGING INFORMATION


Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TPS22908YZTR	ACTIVE	DSBGA	YZT	4	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	
TPS22908YZTT	ACTIVE	DSBGA	YZT	4	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	

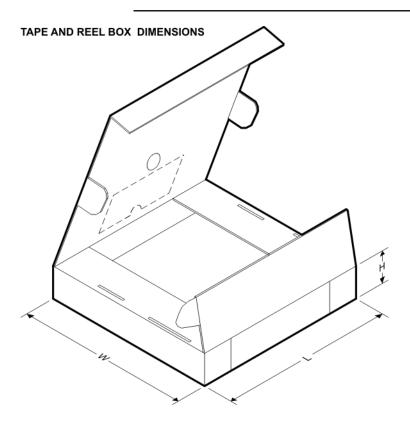
24-Aug-2012

TAPE AND REEL INFORMATION


REEL DIMENSIONS

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

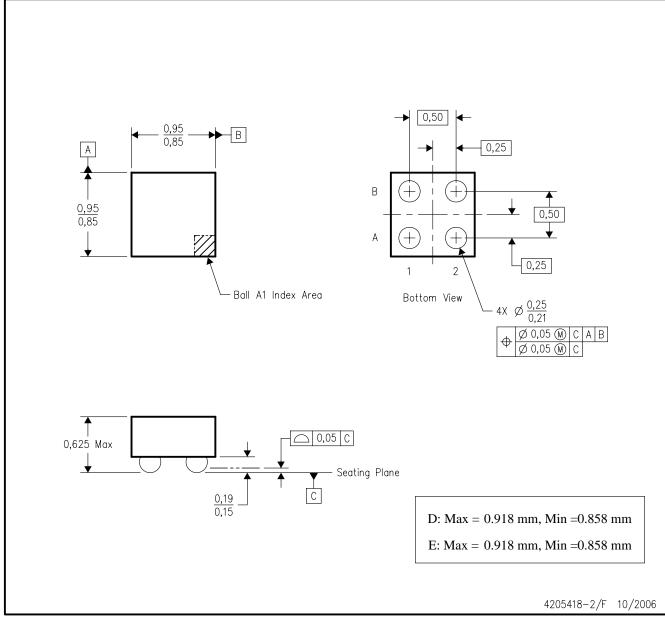


A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS22908YZTR	DSBGA	YZT	4	3000	180.0	8.4	0.99	0.99	0.69	4.0	8.0	Q1
TPS22908YZTT	DSBGA	YZT	4	250	180.0	8.4	0.99	0.99	0.69	4.0	8.0	Q1

PACKAGE MATERIALS INFORMATION

24-Aug-2012



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS22908YZTR	DSBGA	YZT	4	3000	210.0	185.0	35.0
TPS22908YZTT	DSBGA	YZT	4	250	210.0	185.0	35.0

YZT (S-XBGA-N4)

DIE-SIZE BALL GRID ARRAY

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. NanoFree™ package configuration.
 - D. This package is Lead-free. Refer to the 4 YET package (drawing 4205421) for tin-lead (SnPb).