

SGM2576/SGM2576B Power Distribution Switches

GENERAL DESCRIPTION

The SGM2576 and SGM2576B are integrated typically $100m\Omega$ power switch for self-powered and bus-powered Universal Series Bus (USB) applications.

The SGM2576 and SGM2576B integrate programmable current limiting to protect the upstream power supply from damage during over-current or short-circuit conditions. They have thermal shutdown that protect the device and load. Thermal shutdown shuts off the output MOSFET if the die temperature exceeds +150°C until the die temperature drops to +130°C.

These devices employ soft-start circuit that minimizes inrush current in applications where highly capacitive loads are employed.

SGM2576 and SGM2576B are available in the Green SOT-23-5 package. They are rated over the -40°C to +85°C temperature range.

FEATURES

- 100mΩ (TYP) High-side N-Channel MOSFET
- Programmable Current Limit Range: 0.4A to 2.5A 1500mA ± 190mA@R_{ILIM} = 4.53kΩ
- Input Voltage Range: 2.5V to 5.5V
- Low 23µA Quiescent Current
- Typical 0.1µA Shutdown Current
- Soft-Start Function
- Temperature Shutdown Protection
- Under-Voltage Lockout Protection for VIN
- No Reversed Leakage Current (Reverse Blocking)
- Automatic Output Discharge in Shutdown Mode (SGM2576 Only)
- 500kΩ Pull-Down Resistor at EN Pin
- Evaluated to IEC 60950-1, Ed 2, Am1, Annex CC, Test Program 1 with CB Report
- Available in the Green SOT-23-5 Package

APPLICATIONS

General Purpose Power Switching USB Bus/Self Powered Hubs USB Peripherals ACPI Power Distribution Smart Phone LCD TV

TYPICAL APPLICATION

Figure 1. Typical Application Circuit

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	MPERATURE ORDERING		PACKING OPTION
SGM2576	SOT-23-5	-40°C to +85°C	SGM2576YN5G/TR	SU3XX	Tape and Reel, 3000
SGM2576B	SOT-23-5	-40°C to +85°C	SGM2576BYN5G/TR	ME4XX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XX = Date Code.

YYY X X

Date Code - Month
Date Code - Year

— Serial Number

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

All Pins	6V
Power Dissipation, $P_D @ T_A = +25^{\circ}C$	
SOT-23-5	0.3W
Package Thermal Resistance	
SOT-23-5, θ _{JA}	
SOT-23-5, θ _{JC}	93°C/W
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	2000V
MM	400V

RECOMMENDED OPERATING CONDITIONS

Input Voltage Range	2.5V to 5.5V
EN Voltage Range	0.3V to 5.5V
All Other Pins	0V to 5.5V
Junction Temperature Range	40°C to +125°C
Operating Temperature Range	40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	VOUT	Output Voltage.
2	GND	Ground.
3	ILIM	Current Limit Programming Pin. Connect a resistor R_{ILIM} from this pin to GND to program the current limit: $I_{LIM} = \frac{6800}{R_{ILIM}}$ (A)
4	EN	Chip Enable. Active HIGH for SGM2576 and SGM2576B. They have integrated a 500 k Ω pull-down resistor at this pin.
5	VIN	Power Input Voltage.

TEST CIRCUIT

ELECTRICAL CHARACTERISTICS

(At T_A = +25°C, V_{IN} = 5V, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range	V _{IN}		2.5		5.5	V
Quiescent Supply Current	Ι _Q	Switch on, VOUT = open		23	35	μA
Shutdown Supply Current	I _{SD}	Switch off, VOUT = open		0.1		μA
Output Leakage Current	I _{LEAKAGE}	Switch off, V _{OUT} = 0V		0.1		μA
Enchle Innut Threehold	VIH	V _{IN} = 2.5V to 5.5V	1.6			v
Enable Input Threshold	VIL	V _{IN} = 2.5V to 5.5V			0.4	v
Pull-Down Resistor at EN Pin	R _{PULL_DOWN}			500		kΩ
Switch Resistance	R _{DS(ON)}	V _{IN} = 5V, I _{OUT} = 500mA		100		mΩ
Output Turn-On Delay Time	t _{on}	$R_L = 10\Omega$, $C_L = 1\mu F$, Figure 5		2.3		ms
Output Turn-Off Delay Time	t _{OFF}	$R_L = 10\Omega$, $C_L = 1\mu F$, Figure 5		25		μs
		R _{ILIM} = 17kΩ		400		
		$R_{ILIM} = 6.8 k\Omega$		1000		mA
Current Limit Threshold	I _{LIM}	R _{ILIM} = 4.53kΩ	1310 1500		1690	
		R _{ILIM} = 3.4kΩ		2000		
		$R_{ILIM} = 2.7 k\Omega$		2500		1
Under-Voltage Lockout Threshold	V _{UVLO}	V _{IN} rising		2.15	2.3	V
Under-Voltage Lockout Threshold Hysteresis				0.1		V
VOUT Shutdown Discharge Resistance (SGM2576 Only)	R _{DIS}	Switch off		50		Ω
Thermal Shutdown Temperature		T_{J} increasing		150		°C
Thermal Shutdown Hysteresis				20		°C

SGM2576 SGM2576B

TYPICAL PERFORMANCE CHARACTERISTICS

At T_A = +25°C, V_{IN} = 5V, unless otherwise noted.

SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At $T_A = +25^{\circ}C$, $V_{IN} = 5V$, unless otherwise noted.

SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_{IN} = 5V, unless otherwise noted.

SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_{IN} = 5V, unless otherwise noted.

FUNCTIONAL BLOCK DIAGRAMS

Figure 4. SGM2576B Block Diagram

TIMING DIAGRAM

Figure 5. Switch Turn-On and Turn-Off Delay Times

FUNCTIONAL DESCRIPTION

Input and Output

VIN is the power supply connection to the logic circuitry and the drain of the MOSFET. VOUT is the source of the output MOSFET. In a typical circuit, current flows from VIN to VOUT toward the load. The output MOSFET and driver circuit are also designed to allow the MOSFET source to be externally forced to a higher voltage than the drain (V_{OUT} >V_{IN}) when the switch is disabled.

Thermal Shutdown

Thermal shutdown shuts off the output MOSFET if the die temperature exceeds $+150^{\circ}$ C until the die temperature drops to $+130^{\circ}$ C.

Soft-Start

In order to eliminate the upstream voltage sag caused by the large inrush current during hot-plug events, the "soft-start" feature effectively isolates power supplies from such highly capacitive loads.

Under-Voltage Lockout (UVLO)

UVLO prevents the MOSFET switch from turning on until input voltage exceeds 2.15V (TYP). If input voltage drops below 2.05V (TYP), UVLO shuts off the MOSFET switch. Under-voltage detection functions only when the switch is enabled.

Current Limiting and Short Protection

The current limit circuit is designed to limit the output current to protect the upstream power supply. The typical current limit threshold is set through R_{ILIM} .

Under output short-circuit condition, the typical current limit folded back 75%.

If SGM2576 and SGM2576B keep at over-current condition for a long time, the junction temperature may exceed 150°C, and over-temperature protection will shut down the output until temperature drops 130°C or limit (short) condition is removed.

Reverse-Voltage Protection

The reverse-voltage protection feature turns off the N-MOSFET switch whenever the output voltage exceeds the input voltage by 50mV (TYP). Its hysteresis voltage is 38mV (TYP).

Power Dissipation

The device's junction temperature depends on several factors such as the load, PCB layout, ambient temperature, and package type. Equations that can be used to calculate power dissipation and junction temperature are found below:

$$P_D = R_{DS(ON)} \times I_{OUT}^2$$

To relate this to junction temperature, the following equation can be used:

$$T_{J} = P_{D} \times \theta_{JA} + T_{A}$$

where:

 T_J = junction temperature

T_A = ambient temperature

 θ_{JA} = the thermal resistance of the package

APPLICATION INFORMATION

Supply Filter Capacitor

In order to prevent the input voltage drooping during hot-plug events, connect a 10µF ceramic capacitor (C_{IN}) from VIN to GND. The C_{IN} is positioned close to VIN and GND of the device. However, higher capacitor values could reduce the voltage sag on the input further. Furthermore, an output short will cause ringing on the input without the input capacitor. It could destroy the internal circuitry when the input transient exceeds 6V which is the absolute maximum supply voltage even for a short duration. Therefore 47µF C_{IN} capacitor is recommended for SGM2576/SGM2576B when programmable current limit threshold exceeds 1.5A.

Output Filter Capacitor

Between VOUT and GND, connect a low-ESR 10μ F ceramic capacitor to meet the 330mV maximum drop requirement. Standard bypass methods should be used to minimize inductance and resistance between the bypass capacitor and the down-steam connector. This will reduce EMI and improve the transient performance. If long cables are connected to the output terminals, an anti-parallel schottky diode such as BAT54 is suggested to be placed in parallel with the output terminals to absorb the negative ringing due to the cable inductance.

PCB Layout Guide

For best performance of the SGM2576/SGM2576B, the following guidelines must be strictly followed:

- Keep all V_{BUS} traces as short and wide as possible and use at least 2 ounce copper for all V_{BUS} traces.
- Place a ground plane under all circuitry to lower both resistance and inductance and improve DC and transient performance.
- Dual low-ESR 10µF ceramic capacitors between VOUT and GND, VIN and GND.
- Locate the output capacitor as close to the connectors as possible to lower impedance (mainly inductance) between the port and the capacitor and improve transient performance.
- Input and output capacitors should be placed closed to the IC and connected to ground plane to reduce noise coupling.
- Locate the ceramic bypass capacitors as close as possible to the VIN pin and VOUT pin of SGM2576/SGM2576B.

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

MARCH 2018 - REV.A.2 to REV.A.3

Added SGM2576B Version	A
DECEMBER 2017 – REV.A.1 to REV.A.2	
Update Feature section	
APRIL 2016 – REV.A to REV.A.1	
Changed Reverse-Voltage Protection section	
Changes from Original (OCTOMBER 2015) to REV.A	
Changed from product preview to production data	٨

PACKAGE OUTLINE DIMENSIONS

SOT-23-5

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.050 1.150 0.041		0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	BSC	0.037	BSC	
e1	1.900 BSC		0.075	BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	0° 8°		8°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-5	7″	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	00002

