QONO

QM13344

4xSPST (Dual Single-Pole-Single-Throw Switch)

Product Overview

QM13344 is the smallest 4xSPST with VRF >80Vp and very low COFF. Excellent performance in a small solution size enables creation of antenna tuning solutions optimum for 5G applications.

10 Pin 1.1 x 1.5 x 0.4 mm Module Package

Functional Block Diagram

Key Features

- Very low COFF: <95fF
- Very high RF voltage handling capability: >80Vp
- 3 unique selectable USID using external pin, ID
- Small size 1.1mm x 1.5mm, module package
- > 2kV HBM ESD Protection on all pins
- RFFE 2.1 capable
- Suitable for all cellular applications including 5G with broadband performance up to 6GHz

Applications

- Antenna Tuning
- Band Switching
- Impedance Tuning

Ordering Information

Part Number	Description
QM13344SB	5-pc Sample Bag
QM13344SR	100-pc, 7" Reel
QM13344TR13	10000-pc, 13" Reel
QM13344DK	Design Kit with EVB and 5-pc Sample Bag

QM13344 4xSPST (Single-Pole-Single-Throw Switch)

Absolute Maximum Ratings

Parameter	Rating	
Storage Temperature	-40 to 150 °C	
Operating Temperature	-30 to 90 °C	
VID,SDATA, SCLK	2.5V	
Max RF Voltage between RFC port and Ground (V_{RF}) V _{IO} =1.8V, Temp=25 °C	80V _P	

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of the Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Recommended Operating Conditions

PARAMETER	MIN.	TYP.	MAX.	UNITS
V _{IO} Supply Voltage	1.65	1.8	1.95	V
Ivio Supply Current (Active Mode)		40		μA
V _{IO} Supply Current (Low Power Mode)		1		μA
SDATA, SCLK Logic High	0.8 x V _{IO}	Vio	1.95	V
SDATA, SCLK Logic Low		0		V

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

QONO

PRELIMINARY

QM13344 4xSPST (Single-Pole-Single-Throw Switch)

Electrical Specifications

Test conditions unless otherwise stated: all unused RF ports terminated in 50 Ω , Input and Output = 50 Ω , T = 25°C, V_{IO} = 1.8V, SDATA/SCLK = 1.8 V / 0 V

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Ron	ON-State		1.95		Ω
Coff	OFF-State		95		fF
Second Harmonic			-108		dBm
Third Harmonic	fo = 700MHz; Pin = 23dBm		-117		dBm
Second Harmonic			-90		dBm
Third Harmonic	fo = 915MHz; Pin = 35dBm		-81		dBm
Second Harmonic			-84		dBm
Third Harmonic	fo = 1910MHz; Pin = 33dBm		-91		dBm
Second Harmonic			-76		dBm
Third Harmonic	fo = 2570MHz; Pin = 23dBm		-94		dBm
ON Switching Time	End of Register Write to 90% final RF Amplitude		10		μs
OFF Switching Time	End of Register Write to 10% final RF Amplitude		10		μs
IIP2	Refer to IIP2 conditions table		135		dBm
IIP3	Refer to IIP3 conditions table		78		dBm

IIP2 Test Conditions

	IN-BAND FREQ	CW T	ONE 1	CW TONE 2		
BAND		-	-		-	
	[MHZ]	[MHZ]	[DBM]	[MHZ]	[DBM]	
Band I Low	2140	1950	+20	190	-15	
Band I High	2140	1950	+20	4090	-15	
Band II Low	1960	1880	+20	80	-15	
Band II High	1960	1880	+20	3840	-15	
Band V Low	881.5	836.5	+20	45	-15	
Band V High	881.5	836.5	+20	1718	-15	
Band VII Low	942.5	897.5	+20	45	-15	
Band VII High	942.5	897.5	+20	1840	-15	

IIP3 Test Conditions

BAND	IN-BAND FREQ	CW TONE 1		CW TONE 2	
DAND	[MHZ]	[MHZ]	[DBM]	[MHZ]	[DBM]
Band I	2140	1950	+20	1760	-15
Band V	881.5	836.5	+20	791.5	-15

QOCVO

PRELIMINARY

QM13344 4xSPST (Single-Pole-Single-Throw Switch)

Test Setup

IIP2, IIP3, VP and Harmonic Measurement Setup

Power Modes and Triggering & USID_SEL Pin Connection

As per RFFE specification, register 28 is used for setting the power mode of the device and triggering functionality.

- Active Mode Set register 28 bits D7:D6 to 00. REG_07<7:0>=00XXXXXX
- Low Power Mode Set register 28 bits D7:D6 to 10. REG_07<7:0>=10XXXXXX

An external pin, ID, on the QM13344 provides the user with an option to set up to 3 of the USID. The ID pin can be used to set the USID to either 0110, 0111 or 1000. The ID pin can be connected to GND, VIO or float.

ID PIN CONNECTION	USID [S3:S0]
Connect to GND	0110
Connect to VIO	0111
float / NC	1000

QM13344 4xSPST (Single-Pole-Single-Throw Switch)

RFFE MIPI Register Map

Register 0x0000 – ANT_CTRL0

Bit(s)	Field Name	Description		Reset	B/G	Trig	R/WM
7:4	SPARE	Reserved for future use		0x00	No	0 - 10	R/WM
		Switch Selection					
		0000: ALL OFF	1000: RF4 ON			0 - 10	
	SP4T[3:0]	0001: RF1 ON	1001: RF4,1 ON	0x0 No			
		0010: RF2 ON	1010: RF4,2 ON				
3:0		0011: RF2,1 ON	1011: RF4,2,1 ON		0x0 No		R/WM
		0100: RF3 ON	1100: RF4,3 ON				
		0101: RF3,1 ON	1101: RF4,3,1 ON				
		0110: RF3,2 ON	1110: RF4,3,2 ON				
		0111: RF3,2,1 ON	1111: RF4,3,2,1 ON				

Register 0x0001 – ANT_CTRL1

Regis	ter 0x0001 — ANT_	_CTRL1				
Bit(s)	Field Name	Description	Reset	B/G	Trig	R/WM
7:0	SPARE	Reserved for future use	0x00	No	0 - 10	R/WM
Regis	ter 0x001A – RFF	E_STATUS				

Register 0x001A - RFFE_STATUS

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
		Setting this bit initiates a software reset				
7	UDR_RST	Note: On software reset, this register and all User Defined registers (UDRs) are reset. This bit will always read as 0.	0	No	No	W
6	CMD_FR_P_ERR	Command Frame received with a parity error	0	No	No	R/W
5	CMD_LEN_ERR	Command Sequence received with an incorrect length	0	No	No	R/W
4	ADDR_FR_P_ERR	Address Frame received with a parity error	0	No	No	R/W
3	DATA_FR_P_ERR	Data Frame received with a parity error	0	No	No	R/W
2	RD_INVLD_ADDR	Read Command Sequence received with an invalid address	0	No	No	R/W
1	WR_INVLD_ADDR	Write Command Sequence received with an invalid address	0	No	No	R/W
0	BID_GID_ERR	Read Command Sequence received with a BSID or GSID	0	No	No	R/W
		Note: Reading this register resets this register.				

Register 0x001B - GSID

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:4	GSID0[3:0]	Group Slave ID0	0x0	No	No	R/W
3:0	GSID1[3:0]	Group Slave ID1	0x0	No	No	R/W

QM13344 4xSPST (Single-Pole-Single-Throw Switch)

Register 0x001C – PM_TRIG

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7	PWR_MODE[1]	0: Normal Operation	1	B/G	No	R/W
1		1: Low Power - Antenna in isolation	1	D/G	INO	1.1/1/1
		0: ACTIVE				
6	PWR_MODE[0]	1: STARTUP - Reset all registers to default settings	0	B/G	No	R/W
0		Note: Setting PWR_MODE to STARTUP is identical to a hardware reset initiated by the VIO signal.	0	D/G	NO	
		Setting bit TriggerMask[N] disables Trigger[N]				
		TriggerMask[N] updates before Trigger[N] is processed		No		
5:3	TriggerMask[2:0]	Note: When Trigger[N] is disabled, writing to a register associated with Trigger[N] sends data directly to that register. If a register is associated with multiple triggers, then <u>all associated triggers</u> must be disabled to allow direct writes to the associated register.	06000		No	R/W
		Setting bit Trigger[N] loads Trigger[N]'s associated registers				
2:0	Trigger[2:0]	Note: When Trigger[N] is enabled, writing to a register associated with Trigger[N] sends data to that register's shadow. Setting the Trigger[N] bit loads data from shadow. <u>All triggers</u> are processed immediately and simultaneously and then cleared. Trigger[0], [1], and [2] will always read as 0.	06000	B/G	No	W

Register 0x001D – PRODUCT_ID

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
		Lower eight bits of Product Number				
7:0	PROD_ID[7:0]	Note: These are read-only registers. However, as part of the special programming sequence for writing USID, a write command sequence is performed on one or both registers, but does not update them. See MIPI 6.6.2 for details.	0x3A	No	No	R

Register 0x001E - MANUFACTURER_ID

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
		Lower eight bits of MIPI Manufacturer ID				
7:0	MFG_ID[7:0]	Note: These are read-only registers. However, as part of the special programming sequence for writing USID, a write command sequence is performed on one or both registers, but does not update them. See MIPI 6.6.2 for details.	0xC6	No	No	R

QM13344 4xSPST (Single-Pole-Single-Throw Switch)

Register 0x001F – MAN_USID

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:4 MFG_ID[11:8]		Upper four bits of MIPI Manufacturer ID				
	Note: This is a read-only register. However, as part of the special programming sequence for writing USID, a write command sequence is performed on this register, but does not update it. See MIPI 6.6.2 for details.	0x3	No	No	R	
3:0	USID[3:0]	Programmable Unique Slave ID The default value at reset is selected by tying pin SID. SID USID GND 0x6 VIO 0x7 float 0x8 Note: USID is only writeable using a special programming sequence. See MIPI 6.6.2 for details.	0x4	No	No	R/W

Register 0x0020 - EXT_PRODUCT_ID

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
		Upper eight bits of Product Number				
7:0	PROD_ID[15:8]	Note: These are read-only registers. However, as part of the special programming sequence for writing USID, a write command sequence is performed on one or both registers, but does not update them. See MIPI 6.6.2 for details.	0x00	No	No	R

Register 0x0021 - REVISION ID

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:6	MAJOR_REV[1:0]	Major Revisions - all layer	0b00	No	No	R
5:4	MINOR_REV[1:0]	Minor Revisions - metal only	0b00	No	No	R
3:0	MISC_REV[3:0]	Misc Revisions - mask variants	0b0001	No	No	R
		Note: The REVISION_ID register contains this product's revision number which is set by Qorvo according to manufacture date. The value may change throughout the product life cycle.				

Register 0x0022 – GSID0-1

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:4	GSID0[3:0]	Group Slave ID0	0x0	No	No	R/W
3:0	GSID1[3:0]	Group Slave ID1	0x0	No	No	R/W

QM13344 4xSPST (Single-Pole-Single-Throw Switch)

Register 0x0023 - UDR_RST

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
		Setting this bit initiates a software reset				
7	UDR_RST	Note: On software reset, this register and all User Defined registers (UDRs) are reset. This bit will always read as 0.	0	B/G	No	W
6:0	RESERVED		0x00	No	No	R

Register 0x0024 - ERR SUM

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7	SPARE	Reserved for future use	0	No	No	R/W
6	CMD_FR_P_ERR	Command Frame received with a parity error	0	No	No	R/W
5	CMD_LEN_ERR	Command Sequence received with an incorrect length	0	No	No	R/W
4	ADDR_FR_P_ERR	Address Frame received with a parity error	0	No	No	R/W
3	DATA_FR_P_ERR	Data Frame received with a parity error	0	No	No	R/W
2	RD_INVLD_ADDR	Read Command Sequence received with an invalid address	0	No	No	R/W
1	WR_INVLD_ADDR	Write Command Sequence received with an invalid address	0	No	No	R/W
0	BID_GID_ERR	Read Command Sequence received with a BSID or GSID	0	No	No	R/W
		Note: Reading this register resets this register.				
	·	5				

Register 0x002B – BUS LD

Regist	Register 0x002B – BUS_LD								
Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W			
7:0	SPARE	Reserved for future use	0x0	No	No	R/W			

Register 0x002C - TEST PATT

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:0	TEST_PATT[7:0]	Test Pattern	0xD2	No	No	R

QM13344 4xSPST (Single-Pole-Single-Throw Switch)

Register 0x002D – EXT_TRIG_MASK

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:0		Setting bit TriggerMask[N] disables Trigger[N]				
		If using an Extended Write to update both TriggerMask and Trigger, than TriggerMask[N] updates <u>before</u> Trigger[N] is processed			5	
	TriggerMask[10:3]	Note: When Trigger[N] is disabled, writing to a register associated with Trigger[N] sends data directly to that register. If a register is associated with multiple triggers, then <u>all associated triggers</u> must be disabled to allow direct writes to the associated register.	0x00	No	No	R/W

Register 0x002E - EXT_TRIG

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:0		Setting bit Trigger[N] loads Trigger[N]'s associated registers				
	Trigger[10:3]	Note: When Trigger[N] is enabled, writing to a register associated with Trigger[N] sends data to that register's shadow. Setting the Trigger[N] bit loads data from shadow. <u>All triggers</u> are processed immediately and simultaneously and then cleared. Trigger[10 - 3] will always read as 0.	0x00	B/G	No	w

R

QM13344 4xSPST (Single-Pole-Single-Throw Switch)

Power On and Off Sequence

It is very important that the user adheres to the correct timing sequences in order to avoid damaging the device. Figures are NOT drawn to scale.

- VIO must be applied for a minimum of 120 ns before sending SDATA/SCLK to ensure correct data transmission.
- 2. Wait a minimum of 35 μs after RFFE bus is idle to apply an RF signal.

3. RF power must not be applied during switching events. To ensure this, remove RF power before completing a

register write that will change the switch mode.

Digital Signal / RF Power-On Detail

Switch Event Timing

Low-Power Mode Exit Timing

4. If "Low Power Mode" is utilized, there must be a delay of 35 µs before exiting "Low Power Mode".

QM13344 4xSPST (Single-Pole-Single-Throw Switch)

Application Circuit Schematic

PIN	LABEL	DESCRIPTION
1	SDATA	RFFE DATA Line
2	SCLK	RFFE CLOCK Line
3	ID	USID Select
4	VIO	VIO Supply
5	GND	Ground
6	RF4	RF Port 4
7	RF3	RF Port 3
8	RF2	RF Port 2
9	RF1	RF Port 1
10	GND	Ground

QOCVO

PRELIMINARY

QM13344 4xSPST (Single-Pole-Single-Throw Switch)

Tape and Reel Information

Feature	Measure	Symbol	Size (mm)	Feature	Measure	Symbol	Size (mm)
Flange	Diameter	D1	330.0	Cavity	Length	Ao	1.1
	Thickness	W2	14.2		Width	Bo	1.5
	Space Between Flange	W1	8.8		Depth	Ko	0.4
Hub	Outer Diameter	D2	102.0		Pitch	P1	4.0
	Arbor Hole Diameter	D3	13.0	Centerline	Cavity to Perforation (Length)	P2	2.0
	Key Slit Width	В	2.0	Distance	Cavity to Perforation (Width)	P3	3.5
	Key Slit Diameter	D4	20.2	Carrier Tape	Width	W	8.0

(Unless otherwise specified, all dimension tolerances per EIA-481)

QM13344 4xSPST (Single-Pole-Single-Throw Switch)

Handling Precautions

Solderability

Compatible with both lead-free (260 °C max. reflow temperature) and tin/lead (245 °C max. reflow temperature) soldering processes.

Package lead plating: Electrolytic plated Au over Ni

RoHS Compliance

This part is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- SVHC Free

QM13344 4xSPST (Single-Pole-Single-Throw Switch)

REVISION HISTORY

REVISION	DESCRIPTION	
REV A	Preliminary Data Sheet	
REV B	Add RFFE MIPI Register Map and Tape and Reel Information	

K.C.

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-833-641-3811

Email: customer.support@qorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any patter rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2019 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

14 of 14