

SGM4863 Dual 2.1W Audio Power Amplifier Plus Stereo Headphone Function

GENERAL DESCRIPTION

The SGM4863 is a dual bridge-connected audio power amplifier which, when connected to a 5V supply, will deliver 2.1W to a 4Ω load or 2.5W to a 3Ω load with 1% THD+N. In addition, the headphone input pin allows the amplifiers to operate in single-ended mode when driving stereo headphones.

To simplify audio system design, the SGM4863 combines dual bridge speaker amplifiers and stereo headphone amplifiers on one chip.

The SGM4863 features a low-power consumption shutdown mode and thermal shutdown protection. It also utilizes circuitry to reduce "clicks and pops" during device turn-on.

The SGM4863 is available in Green TSSOP20/PP package. It operates over an ambient temperature range of -40° C to $+85^{\circ}$ C.

FEATURES

• P_o at 1% THD+N, V_{cc} = 5V

$R_L = 3 \Omega$	2.5W (typ)
$R_L = 4 \Omega$	2.1W (typ)
$R_L = 8 \Omega$	1.3W (typ)
Low Shutdown Current	0.03µA
Operation Supply Voltage	2.5V to 5.5V

- Stereo Headphone Amplifier Mode
- "Click and pop" Suppression Circuitry
- Unity-Gain Stable
- Thermal Shutdown Protection Circuitry
- -40°C to +85°C Operating Temperature Range
- Green TSSOP20/PP Package

APPLICATIONS

Multimedia Monitors Portable and Desktop Computers Portable Televisions

SGM4863

Dual 2.1W Audio Power Amplifier Plus Stereo Headphone Function

PACKAGE/ORDERING INFORMATION

MODEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
SGM4863	SGM4863YPTS20G/TR	TSSOP20/PP	Tape and Reel, 3000	SGM4863YPTS20

ORDER NUMBER

PIN CONFIGURATION (Top View)

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	
Storage Temperature Range)
Junction Temperature)
Operating Temperature Range40°C to +85°C	;
Lead Temperature Range (Soldering 10 sec)	
	С
ESD Susceptibility	
HBM	V
MM	V

NOTES

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(The following specifications apply for V_{CC} = 5V unless otherwise noted. Limits apply for T_A = 25°C.)

PARAMETER	SYMBOL	CONDITIONS		ТҮР	МАХ	UNITS
Supply Voltage	V _{cc}		2.5		5.5	V
Quiescent Power Supply Current		V_{IN} = 0V, I_O = 0A (Note 1), BTL mode		6.7	10	mA
Quescent Power Supply Current	IQ	V_{IN} = 0V, I_0 = 0A (Note 1), SE mode		3.5	5	ША
Shutdown Current	I _{SD}	$V_{\mbox{\scriptsize cc}}$ applied to the SHUTDOWN pin		0.03	2	μA
Headphone Sense High Input Voltage	VIH	Hold High for SE mode	4			V
Headphone Sense Low Input Voltage	VIL	Hold Low for BTL mode			3.2	V
Turn On Time	T _{ON}	C _{BYPASS} = 1µF		480		ms

EIECTRICAL CHARACTERISTICS FOR BRIDGED-MODE OPERATION

(The following specifications apply for V_{CC} = 5V unless otherwise noted. Limits apply for T_A = 25°C.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Output Offset Voltage	V _{os}	V _{IN} = 0V			9	30	mV
		THD+N = 1%, f = 1kHz	R _L = 3Ω		2.5		- W
			$R_L = 4\Omega$		2.1		
Output Rower(Note 2)	Р		R _L = 8Ω		1.3		
Output Power(Note 2)	P ₀	P _o THD+N = 10%, f = 1kHz	R _L = 3Ω		3.2		
			R _L = 4Ω		2.6		
			R _L = 8Ω		1.6		
Total Harmonic Distortion + Noise		HD+N $f = 1kHz,$ $A_{VD} = 2$	$R_L = 4\Omega, P_O = 2W$		0.04		- %
Total Harmonic Distortion + Noise			R _L = 8 Ω, P _O = 1W		0.03		
Device Querch, Deicetice Detic	PSRR	$V_{\text{RIPPLE}} = 200 \text{mV}_{\text{RMS}},$ $R_{\text{L}} = 8\Omega, C_{\text{B}} = 1.0 \mu \text{F}$	f = 1kHz		-71		dB
Power Supply Rejection Ratio	PORK		f = 217Hz		-73		
Channel Separation	X _{TALK}	f = 1kHz, C _B = 1.0μF	·		-86		dB
Signal to Noise Ratio	SNR	$V_{CC} = 5V, P_0 = 1.1W, R_L = 8\Omega, BW < 80kHz$			-99		dB

SGM4863

EIECTRICAL CHARACTERISTICS FOR SINGLE-MODE OPERATION

(The following specifications apply for V_{CC} = 5V unless otherwise noted. Limits apply for T_A = 25°C.)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
Output Offset Voltage	V _{os}	V _{IN} = 0V			9	30	mV
	Po	THD+N = 1%, f = 1kHz, $R_L = 8Ω$			340		mW
		THD+N = 10%, f = 1kHz, R _L = 8Ω			440		
Output Power		THD+N = 1%, f = 1kHz, R_L = 16Ω			190		
Output Power		THD+N = 10%, f = 1kHz, R_L = 16Ω			230		
		THD+N = 1%, f = 1kHz, R_L = 32Ω			90		
		THD+N = 10%, f = 1kHz, R_L = 32 Ω			120		
Total Harmonic Distortion + Noise	THD+N	$A_V = -1$, $P_O = 75$ mW, 20Hz \leq f \leq 20kHz, $R_L = 32\Omega$			0.1		%
Power Supply Rejection Ratio	PSRR	V_{RIPPLE} = 200m V_{RMS} , C_{B} = 1.0µF	f = 1kHz		-78		dB
	1 OKK		f = 217Hz		-74		ub
Channel Separation	X _{TALK}	f = 1kHz, C _B = 1.0μF			-81		dB
Signal to Noise Ratio	SNR	P_{o} = 340mW, R_{L} = 8 Ω , BW < 80kHz			-100		dB

Specifications subject to changes without notice.

Note 1:The quiescent power supply current depends on the offset voltage when a practical load is connected to the amplifier. Note 2: When driving 3Ω or 4Ω loads, the SGM4863 must be mounted to a circuit board that has a minimum of $2.5in^2$ of exposed, uninterrupted copper area connected to the TSSOP20/PP package's exposed DAP.

SGM4863

Dual 2.1W Audio Power Amplifier Plus Stereo Headphone Function

TYPICAL APPLICATION

Note: It is necessary to connect the schottky barrier diode with the power supply to prevent IC destruction when the power supply occur Surge voltage.

EXTERNAL COMPONENTS DESCRIPTION

Components	Functional Description
Rı	The Inverting input resistance, along with R_F , set the closed-loop gain. R_I , along with C_I , form a high pass filter with $fc = 1/(2\pi R_I C_I)$.
Cı	The input coupling capacitor blocks DC voltage at the amplifier's input terminals. C_I , along with R_I , create a highpass filter with fc = $1/(2\pi R_I C_I)$.
R _F	The feedback resistance, along with R _I , set the closed-loop gain.
Cs	The supply bypass capacitor.
C _B	The capacitor, C_B , filters the half-supply voltage present on the BYPASS pin.

THD+N vs. Frequency

Frequency (kHz)

Power-Supply Rejection Ratio vs. Frequency

-120

0.01

0.1

1

Frequency (kHz)

10

100

Dual 2.1W Audio Power Amplifier Plus Stereo Headphone Function

PACKAGE OUTLINE DIMENSION

TSSOP20/PP

SGMICRO is dedicated to provide high quality and high performance analog IC products to customers. All SGMICRO products meet the highest industry standards with strict and comprehensive test and quality control systems to achieve world-class consistency and reliability.

For information regarding SGMICRO Corporation and its products, see <u>www.sg-micro.com</u>

