

GENERAL DESCRIPTION

The SGM3715 is a high voltage, $-V_{CC}$ to $+V_{CC}$ wide range positive and negative signal passing dual single-pole/double-throw (SPDT) analog switch that is designed to operate from a single 2.7V to 12V power supply. Targeted applications include battery powered equipment that benefit from the SGM3715's low 0.8 Ω (TYP) on-resistance for dual NO to COM switches and dual NC to COM switches and fast switching speeds.

The SGM3715 has excellent on-resistance matching $(0.01\Omega \text{ TYP})$ between switches and guarantees excellent on-resistance flatness over all signal range. This ensures excellent linearity and low distortion when switching audio signals.

The SGM3715 is a committed dual single-pole/doublethrow (SPDT) that consist of two normally open (NO) and two normally closed (NC) switches. This configuration can be used as a dual 2-to-1 multiplexer.

The SGM3715 can pass -V_{CC} to +V_{CC} wide range positive and negative signals with very low distortion.

The SGM3715 is available in Green WLCSP-1.27×2.13-15B package. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- Wide Voltage Operation: 2.7V to 12V
- On-Resistance for Switches: 0.8Ω (TYP)
- -V_{cc} to +V_{cc} Rail-to-Rail Low Distortion Positive and Negative Signal Passing
- High Off-Isolation
- Very Low Crosstalk
- 1.8V Logic Compatible Control Pin
- Break-Before-Make Switching
- -40°C to +85°C Operating Temperature Range
- Available in Green WLCSP-1.27×2.13-15B Package

APPLICATIONS

Portable Instrumentation Battery-Operated Equipment

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	TEMPERATURE ORDERING		PACKING OPTION	
SGM3715	WLCSP-1.27×2.13-15B	-40°C to +85°C	SGM3715YG/TR	XXXXX 3715	Tape and Reel, 3000	

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND0V to 13.2V
IN1, IN2, EN to GND0V to 6V
Analog Voltage Range $^{(1)}$ (-V _{CC} - 0.3V) to (V _{CC} + 0.3V)
Continuous Current from NO to COM±350mA
Continuous Current from NC to COM
Peak Current from NO to COM±400mA
Peak Current from NC to COM ±400mA
I/O Clamp Current (VI < 0)30mA
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM
MM400V
CDM

NOTE:

1. Signals on NC, NO, or COM exceeding V_{CC} will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

RECOMMENDED OPERATING CONDITIONS

Supply Voltage Range	2.7V to 12V
Operating Temperature Range	40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

SGM3715

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
A1	C _N	Charge Pump Flying Capacitor Negative Terminal.
B1	CP	Charge Pump Flying Capacitor Positive Terminal.
C1	Vcc	Power Supply.
A2	PVss	Negative Supply Voltage Output. Connect one 0.1µF ceramic capacitor from PV _{SS} to GND.
B2	N.C.	No Connection.
C2	GND	Ground.
A3	NO2	Normally-Open Terminal.
В3	EN	Enable Control. When EN = "Low", both NC and NO will be disconnected with COM, negative charge pump doesn't work and the SGM3715 will be in shutdown state. When EN = "High", negative charge pump will work, the SGM3715 will be in working state, and NC or NO will be connected with COM depending on the logical state of IN.
C3	NO1	Normally-Open Terminal.
A4	COM2	Common Terminal.
B4	IN1	Digital Control Pin to Connect the COM Terminal to the NO or NC Terminal.
C4	COM1	Common Terminal.
A5	NC2	Normally-Closed Terminal.
B5	IN2	Digital Control Pin to Connect the COM Terminal to the NO or NC Terminal.
C5	NC1	Normally-Closed Terminal.

NOTE: NO, NC and COM terminals may be an input or output.

FUNCTION TABLE

 Table 1. Function Table of Switch 1:

EN	IN1	COM1	NEGATIVE CHARGE PUMP
0	Х	COM1 is disconnected with NO1 and NC1	Turn off
1	0	COM1 = NC1	Turn on
1	1	COM1 = NO1	Turn on

Table 2. Function Table of Switch 2:

EN	IN2	COM2	NEGATIVE CHARGE PUMP
0	Х	COM2 is disconnected with NO2 and NC2	Turn off
1	0	COM2 = NC2	Turn on
1	1	COM2 = NO2	Turn on

ELECTRICAL CHARACTERISTICS

(V_{CC} = 3.3V, Full = -40°C to +85°C. Typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH								
Analog Signal Range	V_{NO}, V_{NC}, V_{COM}			Full	-V _{cc}		+V _{CC}	V
		-V _{CC} ≤ V _{NO} , V _N	+25°C		0.8	1.1		
On-Resistance	R _{on}	$I_{COM} = -50 \text{mA},$		Full			1.7	Ω
On-Resistance Match Between	4.0	$-V_{CC} \le V_{NO}$ or V	$V_{\rm NC} \leq V_{\rm CC},$	+25°C		0.01	0.15	0
Channels	ΔR_{ON}	I _{сом} = -50mA,		Full			0.25	Ω
On Resistance Flatness	Р	$-V_{CC} \le V_{NO}$ or V	V _{NC} ≤ V _{CC} ,	+25°C		0.05	0.15	Ω
On-Resistance Flatness	R _{FLAT(ON)}	I _{сом} = -50mA,	Test Circuit 1	Full			0.2	12
Source Off Leakage Current		V_{NO} or $V_{NC} = -2$	2.8V, 2.8V,	+25°C	-0.5	0.01	0.5	μA
Source On Leakage Current	I _{NC(OFF)} , I _{NO(OFF)}	V _{COM} = 2.8V, -	2.8V	Full			1	μΛ
Channel On Leakage Current	I _{NC(ON)} , I _{NO(ON)} ,	V_{NO} or $V_{NC} = -2$	2.8V, 2.8V, V _{сом} = floating,	+25°C	-0.5	0.01	0.5	μA
Channel On Leakage Current	I _{COM(ON)}	or V_{NO} or V_{NC} :	= floating, V_{COM} = -2.8V, 2.8V	Full			1	μΑ
DIGITAL INPUTS								
Input High Voltage	V _{INH}	V_{CC} = 2.7V to	12V	Full	1.5		5.5	V
Input Low Voltage	V _{INL}	V_{CC} = 2.7V to	12V	Full	0		0.5	V
Pull Down Resistor	R _{PULL DOWN}		+25°C		600		kΩ	
DYNAMIC CHARACTERISTICS								
Turn-On Time	t _{on}	V_{NO} or V_{NC} = 1 Test Circuit 2	+25°C		820		μs	
Turn-Off Time	t _{OFF}	V_{NO} or V_{NC} = 1 Test Circuit 2	+25°C		180		μs	
Break-Before-Make Time Delay	t _D	V_{NO1} or $V_{NC1} = V_{NO2}$ or $V_{NC2} = 1V$, R _L = 50 Ω , C _L = 35pF, Test Circuit 3				680		μs
		$f = 1 kHz, R_L = Test Circuit 4$	32Ω, Signal = 0dBm,			-130		dB
Off Isolation	O _{ISO}		= 50Ω, C _L = 5pF, n, Test Circuit 4	+25℃		-50		
		f = 1kHz, R _L = Test Circuit 5	32Ω, Signal = 0dBm,			-120		
Channel-to-Channel Crosstalk	X _{TALK}	f = 1MHz, R _L = Signal = 0dBm	+25℃		-60		dB	
-3dB Bandwidth	BW	$R_L = 50\Omega, C_L =$ Test Circuit 6	= 5pF, Signal = 0dBm,	+25°C		100		MHz
Channel On Capacitance	C _{ON}			+25°C		60		pF
Charge Injection	Q	V_{G} = GND, R_{G}	$_{\rm s}$ = 0 Ω , C _L = 1nF, Test Circuit 7	+25°C		1000		рС
			V_{NO} , V_{NC} = $2V_{RMS}$, R_L = 600Ω			-113		
			$V_{NO}, V_{NC} = 2V_{PP}, R_L = 600\Omega$			-115		dB
			V_{NO} , V_{NC} = $2V_{PP}$, R_L = 32Ω			-113		
Total Harmonic Distortion	THD	A-Weighting,	$V_{NO}, V_{NC} = 1V_{PP}, R_{L} = 600\Omega$	+25℃		-112		
		Test Circuit 8	$V_{NO}, V_{NC} = 1V_{PP}, R_{L} = 32\Omega$			-110		
			$V_{\rm NO}, V_{\rm NC} = 0.5 V_{\rm PP}, R_{\rm L} = 600 \Omega$	1		-108		
			$V_{\rm NO}, V_{\rm NC} = 0.5 V_{\rm PP}, R_{\rm L} = 32 \Omega$	1		-104		
Start Up Time	t _{start}	Switch $V_{\text{EN}} = 0$	$V \text{ to } V_{\text{EN}} = 1.5 V$	+25°C		0.5		ms

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = 5V, Full = -40°C to +85°C. Typical values are at T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH								
Analog Signal Range	V_{NO}, V_{NC}, V_{COM}			Full	-V _{CC}		+V _{CC}	V
		$-V_{CC} \leq V_{NO}, V_{NC} \leq V_{CC},$		+25°C		0.8	1.1	
On-Resistance	R _{on}	$I_{COM} = -50 \text{mA},$		Full			1.7	Ω
On-Resistance Match Between		-V _{CC} ≤ V _{NO} or '	$V_{NC} \leq V_{CC}$	+25°C		0.01	0.15	0
Channels	ΔR_{ON}	$I_{COM} = -50 \text{mA},$		Full			0.25	Ω
On Desistance Flateres	5	-V _{CC} ≤ V _{NO} or V	$V_{NC} \leq V_{CC}$	+25°C		0.01	0.15	_
On-Resistance Flatness	R _{FLAT(ON)}	$I_{COM} = -50 \text{mA},$	Test Circuit 1	Full			0.2	Ω
Source Off Lookage Current		V_{NO} or $V_{NC} = -$	4.5V, 4.5V,	+25°C	-0.5	0.01	0.5	
Source Off Leakage Current	I _{NC(OFF)} , I _{NO(OFF)}	$V_{COM} = 4.5V, -$		Full			1	μΑ
	I _{NC(ON)} , I _{NO(ON)} ,	V_{NO} or $V_{NC} = -$	4.5V, 4.5V, V _{сом} = floating,	+25°C	-0.5	0.01	0.5	
Channel On Leakage Current	I _{COM(ON)}	or V_{NO} or V_{NC}	= floating, V_{COM} = -4.5V, 4.5V	Full			1	μΑ
DYNAMIC CHARACTERISTICS							•	
Turn-On Time	t _{on}	V_{NO} or V_{NC} = 1V, R_L = 50 Ω , C_L = 35pF, Test Circuit 2		+25°C		880		μs
Turn-Off Time	t _{OFF}	V_{NO} or V_{NC} = 1 Test Circuit 2	+25°C		190		μs	
Break-Before-Make Time Delay	t _D	V_{NO1} or V_{NC1} = $R_L = 50\Omega, C_L =$	+25°C		720		μs	
		f = 1kHz, R _L = 32Ω, Signal = 0dBm, Test Circuit 4		+25°C		-130		dB
Off Isolation	O _{ISO}	f = 1MHz, R _L = Signal = 0dBn			-50			
	, v	f = 1kHz, R _L = Test Circuit 5	105%		-120		- dB	
Channel-to-Channel Crosstalk	X _{TALK}		= 50Ω, C _L = 5pF, n, Test Circuit 5	- +25℃		-60		dD
-3dB Bandwidth	BW	$R_L = 50\Omega, C_L =$ Test Circuit 6	= 5pF, Signal = 0dBm,	+25°C		100		MHz
Channel On Capacitance	C _{ON}			+25°C		60		pF
Charge Injection	Q	V_{G} = GND, R_{G}	$_{\rm s}$ = 0 Ω , C _L = 1nF, Test Circuit 7	+25°C		1000		рС
			V_{NO} , V_{NC} = $2V_{RMS}$, R_L = 600Ω			-117		
			V_{NO} , V_{NC} = $2V_{PP}$, R_L = 600Ω			-115		dB
			V_{NO} , V_{NC} = $2V_{PP}$, R_L = 32Ω			-113		
Total Harmonic Distortion	THD	A-Weighting, Test Circuit 8	V_{NO} , V_{NC} = $1V_{PP}$, R_L = 600Ω	+25°C		-112		
			V_{NO} , V_{NC} = 1 V_{PP} , R_L = 32 Ω			-110		
			$V_{NO}, V_{NC} = 0.5 V_{PP}, R_{L} = 600 \Omega$			-108		
			V_{NO}, V_{NC} = 0.5 V_{PP}, R_{L} = 32 Ω			-104		
Start Up Time	t _{start}	Switch $V_{EN} = 0V$ to $V_{EN} = 1.5V$		+25°C		0.5		ms
POWER REQUIREMENTS								
Device Complex Comment	1	$\lambda = 0 \lambda = 1$		+25°C		520	650	
Power Supply Current	Icc	V _{IN} = 0V or 1.5	$v_{\rm EN} = 1.5v$	Full			680	μA
Power Supply Current in			$\nabla () = 0 $	+25°C		0.4	1	<u> </u>
Shutdown State	I _{CC}	V _{IN} = 0V or 1.5	$v_{\rm EN} = 0v$	Full			1.5	μΑ

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = 12V, Full = -40°C to +85°C. Typical values are at T_A = +25°C, unless otherwise noted.)

	CONDITIONS						
V_{NO}, V_{NC}, V_{COM}			Full	-V _{cc}		+V _{CC}	V
_	$-V_{CC} \leq V_{NO}, V_{NC} \leq V_{CC}$		+25°C		0.8	1.1	
R _{ON}			Full			1.7	Ω
	-V _{CC} ≤ V _{NO} or '	$V_{NC} \leq V_{CC}$	+25°C		0.01	0.15	_
ΔR_{ON}			Full			0.25	Ω
6	-V _{CC} ≤ V _{NO} or V	$V_{NC} \leq V_{CC}$	+25°C		0.01	0.15	0
RFLAT(ON)	$I_{COM} = -50 \text{mA},$	Test Circuit 1	Full			0.2	Ω
	V_{NO} or V_{NC} = -	11.5V, 11.5V,	+25℃	-1.5	0.05	1.5	
I _{NC(OFF)} , I _{NO(OFF)}			Full			9	μA
	V_{NO} or V_{NC} = -	11.5V, 11.5V,	+25°C	-1.5	0.05	1.5	
I _{COM(ON)}			Full			9	μA
		·			1		
t _{on}	V_{NO} or V_{NC} = 1 Test Circuit 2	V_{NO} or V_{NC} = 1V, R_L = 50 Ω , C_L = 35pF, Test Circuit 2			1100		μs
t _{OFF}	V_{NO} or V_{NC} = 1V, R_L = 50 Ω , C_L = 35pF, Test Circuit 2		+25°C		200		μs
t _D	V_{NO1} or $V_{NC1} = V_{NO2}$ or $V_{NC2} = 1V$,		+25°C		950		μs
	$f = 1 \text{ kHz}, R_L = 32\Omega$, Signal = 0dBm,				-130		
O _{ISO}	f = 1MHz, R _L =	+25°C		-50		dB	
	f = 1kHz, R _L =			-120			
X _{TALK}	f = 1MHz, R _L =		- +25℃ -		-60		dB
BW	R _L = 50Ω, C _L =		+25°C		100		MHz
CON			+25℃		60		pF
-	$V_{G} = GND. R_{G}$	$s = 0\Omega$. C ₁ = 1nF. Test Circuit 7					pC
	0 - , 0						
							-
THD	A-Weighting,		+25℃				dB
	Test Circuit 8		- 20 0				
			-				•
			-				
torapt			+25°C				ms
45 IAKI			.200		0.0		1113
			+25%		620	780	
Icc	V _{IN} = 0V or 1.5	5V, V _{EN} = 1.5V			020		μA
					0.5		
I _{cc}	V _{IN} = 0V or 1.5	5V, V _{EN} = 0V			0.0		μA
	t _{on} t _{off} t _D O _{iso} X _{TALK} BW C _{on} Q THD t _{start}	$\begin{split} & ICON & I_{COM} = -50mA, \\ & \Delta R_{ON} & -V_{CC} \leq V_{NO} \text{ or } I_{ICOM} = -50mA, \\ & R_{FLAT(ON)} & I_{COM} = -50mA, \\ & I_{NC(OFF)}, I_{NO(OFF)} & V_{NO} \text{ or } V_{NC} = -V_{COM} = 11.5V, \\ & I_{NC(ON)}, I_{NO(ON)}, & V_{NO} \text{ or } V_{NC} = -V_{COM} = floating, \\ & V_{COM} = rl_{1.5V}, \\ & I_{NC(ON)}, I_{NO(ON)}, & V_{NO} \text{ or } V_{NC} = -V_{COM} = floating, \\ & V_{COM} = rl_{1.5V}, \\ & I_{NC(ON)}, I_{NO(ON)}, & V_{NO} \text{ or } V_{NC} = -I, \\ & V_{COM} = rl_{I.5V}, \\ & I_{COM} = I_{I.5V}, \\ & I_{ICC} = I_{ICC}, \\ & I_{\mathsf$	$\frac{\Delta R_{ON}}{\Gamma_{COM}} = -50mA, \text{ rest Circuit 1}$ $\frac{\Delta R_{ON}}{\Gamma_{COM}} = -50mA, \text{ Test Circuit 1}$ $R_{FLAT(ON)} = \frac{-V_{CC} \leq V_{NO} \text{ or } V_{NC} \leq V_{CC}, \Gamma_{COM} = -50mA, \text{ Test Circuit 1}$ $\frac{1}{Nc(OFF)}, \frac{1}{No(OFF)} = \frac{V_{NO} \text{ or } V_{NC} = -11.5V, 11.5V, V_{COM} = 11.5V, -11.5V, V_{COM} = 11.5V, 11.5V, V_{COM} = 11.5V, 11.5V, V_{COM} = 11.5V, 11.5V, V_{COM} = 10ating, V_{COM} = -11.5V, V_{COM} = 0.5V_{PP}, R_{L} = 32\Omega, V_{ON}, V_{NC} = 1000, V_{NO}, V_{NC} = 0.5V_{PP}, R_{L} = 32\Omega, V_{NO}, V_{NC} = 1000, V_{NO}, V_{NC} = 0.5V_{PP}, R_{L} = 32\Omega, V_{NO}, V_{NC} = 1000, V_{NO}, V_{NC} = 0.5V_{PP}, R_{L} = 32\Omega, V_{NO}, V_{NC} = 0.5V_{PP}, R_{L} = 300, V_{NO}, V_{NC} = 0.5V_{PP}, R_{L} = 32\Omega, V_{NO}, V_{NC} = 0.5V_{PP}, R_{L} = 32\Omega, V_{NO}, V_{NC} = 0.5V_{PP}, R_{L} = 32\Omega, V_{NO}, V_{NC} = 0.5V_{PP}, R_{L} = $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

SGM3715

TEST CIRCUITS

Test Circuit 1. On-Resistance

Test Circuit 2. Switching Times (ton, toff)

Test Circuit 3. Break-Before-Make Time Delay (t_D)

TEST CIRCUITS (continued)

Test Circuit 6. -3dB Bandwidth

TEST CIRCUITS (continued)

Test Circuit 8. Total Harmonic Distortion (THD)

APPLICATION INFORMATION

Speaker + Receiver is always used in portable devices, and high voltage class D speaker driver is used to drive speaker in order to provide high audio volume. But the high output voltage of class D speaker driver will damage the receiver driver. The SGM3715 provides the safe isolation between receiver driver and high voltage class D speaker driver. The SGM3715 provides low R_{ON} channels to pass the positive and negative signals from capless receiver driver. The circuit is shown in Figure 1.

Figure 1. Typical Application Circuit for Speaker + Receiver

APPLICATION INFORMATION (continued)

In order to improve audio performance of portable equipment, external speaker power amplifier is always selected to replace the internal integrated speaker power amplifier. Because the audio signal quality of audio line out or headset driver is better than the integrated speaker power amplifier, the audio signal of line out or headset driver is selected as the high performance audio signal source for external speaker power amplifier. High performance SGM3715 is used as the 1-to-2 HiFi signal switch in this application. The circuit is shown in Figure 2, and a stable 3.3V power supply is required in this circuit.

High Voltage Class D Speaker Driver

Figure 2. Typical Application Circuit for 1-to-2 HiFi Audio Signal Switch

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (NOVEMBER 2017) to REV.A

Changed from product preview to production dataAll
--

PACKAGE OUTLINE DIMENSIONS WLCSP-1.27×2.13-15B

NOTE: All linear dimensions are in millimeters.

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
WLCSP-1.27×2.13-15B	7″	9.5	1.47	2.37	0.78	4.0	4.0	2.0	8.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	00002

